基于肿瘤全域表观扩散系数纹理分析预测上皮性卵巢癌复发的研究

毛咪咪,冯 峰

中国临床医学影像杂志 ›› 2020, Vol. 31 ›› Issue (1) : 52-56.

中国临床医学影像杂志 ›› 2020, Vol. 31 ›› Issue (1) : 52-56. DOI: 10.12117/jccmi.2020.01.013
腹部影像学

基于肿瘤全域表观扩散系数纹理分析预测上皮性卵巢癌复发的研究

  • 毛咪咪,冯  峰
作者信息 +

Prediction recurrence value of apparent diffusion coefficient based on whole tumor volume measurement in #br# patients with epithelial ovarian cancer

  • MAO Mi-mi, FENG Feng
Author information +
文章历史 +

摘要

目的:探讨基于肿瘤全域的表观扩散系数(Apparent diffusion coefficient,ADC)纹理分析对上皮性卵巢癌(Epithelial ovarian carcinoma,EOC)复发的预测价值。方法:回顾性分析49例经病理证实为EOC患者的术前DWI成像(b=0、800 s/mm2),利用后处理软件在ADC图上绘制全瘤的感兴趣区,分析提取出纹理参数,包括偏度、峰度、熵值、惰性、相关性、对比度、变异等共77个参数。采用多因素Logistic回归分析确定可作为复发的最佳预测因素,绘制ROC曲线评价其预测效能。结果:两组患者肿瘤大小及腹水复发组均高于非复发组,差异有统计学意义(P<0.05),FIGO分期两组间差异有统计学意义(P<0.05)。复发组惰性、对比度、变异、熵值显著高于非复发组,峰度、第10百分位数、第25百分位数、相关性显著低于非复发组,差异均有统计学意义(P<0.05)。ROC曲线分析显示峰度、惰性、相关性、肿瘤大小、FIGO分期联合预测复发的曲线下面积最大,为0.929。结论:基于全肿瘤容积的ADC纹理分析有助于预测EOC患者复发。

Abstract

Objective: To investigate the recurrence prediction value of apparent diffusion coefficient(ADC) based on whole tumor volume measurement in patients with epithelial ovarian cancer(EOC). Methods: A retrospective analysis of 49 patients with pathologically proven EOC who underwent preoperative DWI imaging(b=0, 800 s/mm2) was carried out. The post-processing software was used to map the region of interest of the whole tumor on the ADC map, and the texture parameters such as skewness, kurtosis, entropy, inertia, correlation, contrast, variance were extracted and analyzed. Multivariate Logistic regression analysis was used to determine the best predictor of recurrence, and the predictive efficiency of the relevant parameters for recurrence after surgery was evaluated by receiver operating characteristic curve. Results: Tumor size and ascites were higher in recurrence group than those in non-recurrent group. The differences were statistically significant(P<0.05). The difference between the two groups in FIGO staging was statistically significant. The parameters of texture analysis, including inertia, contrast, variance and entropy in recurrence group were higher than those in non-recurrent group. Kurtosis, quantile 10, quantile 25 and correlation in recurrence group were lower than those in non-recurrent group. The differences were statistically significant(P<0.05). ROC curve analysis showed that the area under the curve of kurtosis, inertia, correlation, tumor size and FIGO stage combined to prediction recurrence was the highest, 0.929. Conclusion: The preoperative texture analysis of ADC images based on total tumor volume helps predicting recurrence of EOC.

关键词

卵巢肿瘤 / 磁共振成像

Key words

Ovarian neoplasms / Magnetic resonance imaging

引用本文

导出引用
毛咪咪,冯 峰. 基于肿瘤全域表观扩散系数纹理分析预测上皮性卵巢癌复发的研究[J]. 中国临床医学影像杂志. 2020, 31(1): 52-56 https://doi.org/10.12117/jccmi.2020.01.013
MAO Mi-mi, FENG Feng. Prediction recurrence value of apparent diffusion coefficient based on whole tumor volume measurement in #br# patients with epithelial ovarian cancer[J]. Journal of China Clinic Medical Imaging. 2020, 31(1): 52-56 https://doi.org/10.12117/jccmi.2020.01.013
中图分类号: R737.31    R445.2   

参考文献

[1]Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016, 66(1): 7-30.
[2]Rizzuto I, Stavraka C, Chatterjee J, et al. Risk of ovarian cancer relapse score: a prognostic algorithm to predict relapse following treatment for advanced ovarian cancer[J]. Int J Gynecol Cancer, 2015, 25(3): 416-422.
[3]Goode EL, Block MS, Kalli KR, et al. Dose-Response Association of CD8+ Tumor-Infiltrating Lymphocytes and Survival Time in High-Grade Serous Ovarian Cancer[J]. JAMA Oncol, 2017, 3(12): e173290.
[4]Luvero D, Milani A, Ledermann JA. Treatment options in recurrent ovarian cancer: latest evidence and clinical potential[J]. Ther Adv Med Oncol, 2014, 6(5): 229-239.
[5]Mattonen SA, Palma DA, Haasbeek CJ, et al. Early prediction of tumor recurrence based on CT texture changes after stereotactic ablative radiotherapy(SABR) for lung cancer[J]. Med Phys, 2014, 41(3): 033502.
[6]Just N. Improving tumour heterogeneity MRI assessment with histogram[J]. Br J Cancer, 2014, 111(12): 2205-2213.
[7]沈铿,崔恒,丰有吉. 常见妇科恶性肿瘤诊治指南[M]. 4版. 北京:人民卫生出版社,2014:99.
[8]Lubner MG, Smith AD, Sandrasegaran K, et al. CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges[J]. Radiographics, 2017, 37(5): 1483-1503.
[9]Lee M, Lee H, Cheon GJ, et al. Prognostic value of preoperative intratumoral FDG uptake heterogeneity in patients with epithelial ovarian cancer[J]. Eur Radiol, 2017, 27(1): 16-23.
[10]Braicu EI, Fotopoulou C, Van Gorp T, et al. Preoperative HE4 expression in plasma predicts surgical outcome in primary ovarian cancer patients: results from the OVCAD study[J]. Gynecol Oncol, 2013, 128(2): 245-251.
[11]Ng F, Ganeshan B, Kozarski R, et al. Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival[J]. Radiology 2013, 266(1): 177-184.
[12]郭冬梅,邱天爽,康伟,等. 基于灰度共生矩阵的大鼠肝细胞癌、肝硬化结节超顺磁性氧化铁MR增强图像纹理特征分析[J]. 中国医学影像技术,2010,26(3):563-566.
[13]苗延巍. 定量ADC图的纹理分析对高级别胶质瘤与脑转移瘤的鉴别诊断[D]. 大连:大连医科大学,2018.
[14]Bull JG, Saunders DE, Clark CA. Discrimination of paediatric brain tumours using apparent diffusion coefficient histograms[J]. Eur Radiol, 2012, 22(2): 447-457.

基金

南通市卫生健康委员会科研立项课题(QA2019031)。

Accesses

Citation

Detail

段落导航
相关文章

/