乳腺DBT影像组学对乳腺肿块良恶性的鉴别研究

姜文研1,牛淑娴2,张梦瑶2,崔林鹏2,董 越1,艾 华2,周晓娅3,于 韬1,罗娅红1

中国临床医学影像杂志 ›› 2020, Vol. 31 ›› Issue (6) : 398-402.

中国临床医学影像杂志 ›› 2020, Vol. 31 ›› Issue (6) : 398-402. DOI: 10.12117/jccmi.2020.06.005
乳腺影像学

乳腺DBT影像组学对乳腺肿块良恶性的鉴别研究

  • 姜文研1,牛淑娴2,张梦瑶2,崔林鹏2,董  越1,艾  华2,周晓娅3,于  韬1,罗娅红1
作者信息 +

DBT-based radiomics for differentiating benign and malignant breast lesions

  • JIANG Wen-yan1, NIU Shu-xian2, ZHANG Meng-yao2, CUI Lin-peng2, #br# DONG Yue1, AI Hua1, ZHOU Xiao-ya3, YU Tao1, LUO Ya-hong1
Author information +
文章历史 +

摘要

目的:探讨基于数字乳腺断层摄影(DBT)的影像组学方法在乳腺肿块良恶性鉴别中的作用。方法:回顾性分析了2017年9月—2018年4月辽宁省肿瘤医院收治的160例乳腺肿块患者的影像资料。通过提取和筛选乳腺DBT影像组学特征,建立了影像组学诺模图模型,绘制工作特性(ROC)曲线并计算曲线下面积(AUC)评估模型的鉴别能力,通过决策曲线(DCA)分析评估模型的临床适用性。结果:本研究建立的诺模图模型在训练集和测试集上获得AUC值分别为0.942(敏感性=0.833,特异性=0.928)和0.928(敏感性=0.926,特异性=0.839),DCA分析表明模型具有良好的临床价值。结论:基于DBT影像构建的诺模图模型是作为无创辅助鉴别乳腺肿块良恶性的有效方法。

Abstract

Objective: To evaluate the role of DBT-based radiomics in differentiating benign and malignant breast lesions. Methods: Breast DBT data of 160 patients were collected from Liaoning Cancer Hospital from September 2017 to April 2018 were analyzed. Radiomics features were extracted and analyzed. A nomogram model for distinguishing benign and malignant lesions was constructed. The clinical applicability of the nomogram was further evaluated by decision curve analysis. The predictive abilities of the models were evaluated by ROC curves and AUC values. Result: The AUC values of the constructed nomogram were 0.942(SEN=0.833, SPE=0.928) and 0.928(SEN=0.926, SPE=0.839) in the training and validation cohorts, respectively. The DCA analyses showed that our nomogram had good clinical value. Conclusion: Our nomogram model based on breast DBT image features has great potential in non-invasive distinguishing benign and malignant lesions.

关键词

乳腺肿瘤 / 乳腺疾病 / 放射摄影术

Key words

Breast neoplasms / Breast diseases / Radiology

引用本文

导出引用
姜文研1,牛淑娴2,张梦瑶2,崔林鹏2,董 越1,艾 华2,周晓娅3,于 韬1,罗娅红1. 乳腺DBT影像组学对乳腺肿块良恶性的鉴别研究[J]. 中国临床医学影像杂志. 2020, 31(6): 398-402 https://doi.org/10.12117/jccmi.2020.06.005
JIANG Wen-yan1, NIU Shu-xian2, ZHANG Meng-yao2, CUI Lin-peng2,. DBT-based radiomics for differentiating benign and malignant breast lesions[J]. Journal of China Clinic Medical Imaging. 2020, 31(6): 398-402 https://doi.org/10.12117/jccmi.2020.06.005
中图分类号: R737.9    R655.8   

参考文献

[1]McGuire A, Brown JA, Malone C, et al. Effects of age on the detection and management of breast cancer[J]. Cancers, 2015, 7(2): 908-929.
[2]WY Xie, YS Li, YD Ma. Breast mass classification in digital mammography based on extreme learning machine[J]. Neurocomputing, 2016, 173(3): 930-941.
[3]Michell MJ. Breast screening review—a radiologist’s perspective[J]. Br J Radiol, 2012, 85(1015): 845-1026.
[4]Vedantham S, Karellas A, Vijayaraghavan GR, et al. Digital Breast Tomosynthesis: State of the Art[J]. Radiology, 2015, 277(3): 663-684.
[5]Miglioretti DL, Abraham L, Lee CI, et al. Digital Breast Tomosynthesis: Radiologist Learning Curve[J]. Radiology, 2019, 26(2): 182305.
[6]Tagliafico AS, Valdora F, Mariscotti G, et al. An exploratory radiomics analysis on digital breast tomosynthesis in women with mammographically negative dense breasts[J]. Breast, 2018, 40: 92-96.
[7]Hatt M, Tixier F, Visvikis D, et al. Radiomics in PET?蛐CT: More than meets the eye?[J]. J Nucl Med, 2017, 58(3): 365-366.
[8]Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577.
[9]Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun, 2014, 5(1): 4006.
[10]Ma W, Zhao Y, Ji Y, et al. Breast cancer molecular subtype prediction by mammographic radiomic features[J]. Acad Radiol, 2019, 26(2): 196-201.
[11]Lee SE, Han K, Kwak JY, et al. Radiomics of US texture features in differential diagnosis between triple-negative breast cancer and fibroadenoma[J]. Sci Rep, 2018, 8(1): 13546.
[12]Xiong Q, Zhou X, Liu Z, et al. Multiparametric MRI-based radiomics analysis for prediction of breast cancers insensitive to neoadjuvant chemotherapy[J]. Clin Transl Oncol, 2019, 22(1): 50-59.
[13]Bevilacqua V, Brunetti A, Guerriero A, et al. A performance comparison between shallow and deeper neural networks supervised classification of tomosynthesis breast lesions images[J]. Congn Syst Res, 2019, 53: 3-19.
[14]Zhou H, Dong D, Chen B, et al. Diagnosis of distant metastasis of lung cancer: based on clinical and radiomic features[J]. Transl Oncol, 2018, 11(1): 31-36.
[15]Wang H, Zhou Z, Li Y, et al. Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images[J]. EJNMMI Res, 2017, 7(1): 11.
[16]Sauerbrei W, Royston P, Binder H. Selection of important variables and determination of functional form for continuous predictors in multivariable model building[J]. Stat Med, 2007, 26(30): 5512-5528.
[17]Yang X, Pan X, Liu H, et al. A new approach to predict lymph node metastasis in solid lung adenocarcinoma: a radiomics nomogram[J]. J Thorac Dis, 2018, 10(7): S807-S819.
[18]Helvie MA. Digital Mammography Imaging: Breast Tomosynthesis and Advanced Applications[J]. Radiol Clin North Am, 2010, 48(5): 917-929.
[19]Valdora F, Houssami N, Rossi F, et al. Rapid review: radiomics and breast cancer[J]. Breast Cancer Res Treat, 2018, 169(2): 217-229.
[20]Ma W, Zhao Y, Ji Y, et al. Breast cancer molecular subtype prediction by mammographic radiomic features[J]. Acad Radiol, 2019, 26(2): 196-201.

Accesses

Citation

Detail

段落导航
相关文章

/