ADC全域直方图在鉴别胶质母细胞瘤和脑单发转移瘤中的应用价值

吕青青,张 勇,程敬亮,朱晨迪,汪卫建,许 珂

中国临床医学影像杂志 ›› 2018, Vol. 29 ›› Issue (12) : 844-847.

中国临床医学影像杂志 ›› 2018, Vol. 29 ›› Issue (12) : 844-847. DOI: 10.12117/jccmi.2018.12.002
中枢神经影像学

ADC全域直方图在鉴别胶质母细胞瘤和脑单发转移瘤中的应用价值

  • 吕青青,张 勇,程敬亮,朱晨迪,汪卫建,许 珂
作者信息 +

ADC whole tumor histogram analysis for differentiating glioblastom from solitary brain metastasis

  • LV Qing-qing, ZHANG Yong, CHENG Jing-liang, ZHU Chen-di, WANG Wei-jian, XU Ke
Author information +
文章历史 +

摘要

目的:探讨ADC全域直方图在鉴别胶质母细胞瘤和脑单发转移瘤中的应用价值。方法:回顾性分析我院经手术病理证实的30例胶质母细胞瘤及28例脑单发转移瘤患者的资料,在两组肿瘤ADC图像中包含肿瘤的所有层面上应用Mazda软件勾画的ROI,并进行全域直方图分析,得到9个直方图参数,对两组肿瘤直方图参数特征进行统计学分析,获得两组肿瘤间差异有统计学意义的参数特征,并绘制受试者操作特征(ROC)曲线以评价其鉴别胶质母细胞瘤和脑单发转移瘤的价值。结果:直方图提取出的9个参数特征中,两组间平均值、偏度、第1百分位数、第10百分位数、第50百分位数、第90百分位数、第99百分位数的差异有统计学意义(P<0.05),其ROC曲线下面积分别为0.792、0.658、0.674、0.736、0.801、0.735、0.699,平均值鉴别两种肿瘤的敏感度、特异度分别为70.0%和78.6%;偏度鉴别两种肿瘤的敏感度、特异度分别为60.7%和60.0%;第1百分位数鉴别两种肿瘤的敏感度、特异度分别为76.7%和64.3%;第10百分位数鉴别两种肿瘤的敏感度、特异度分别为70.0%和67.9%;第50百分位数鉴别两种肿瘤的敏感度、特异度分别为63.3%和78.6%;第90百分位数鉴别两种肿瘤的敏感度、特异度分别为70.0%和75.0%;第99百分位数鉴别两种肿瘤的敏感度、特异度分别为70.0%和60.7%。结论:ADC全域直方图分析可作为鉴别胶质母细胞瘤和脑单发转移瘤的重要辅助手段。

Abstract

Objective: To explore the value of ADC whole-tumor histogram in differentiating glioblastom from solitary brain metastasis. Methods: Retrospective analysis of 30 cases of glioblastom and 28 cases of solitary brain metastasis which were pathologically confirmed was done. Region of interest(ROI) on each slice of ADC maps including tumor was drawn and the histogram was analyzed. The two steps were both conducted by the software Mazda. The histogram parameters were analyzed statistically to find out if there is significant difference between the two groups. Next, receiver operating characteristic(ROC) curve was drew to assess diagnostic efficiency. Results: As for the 9 parameters extracted from histogram, the difference of the mean, skewness, the 1th, 10th, 50th, 90th, 99th percentiles between the two groups showed statistical significance(P<0.05). Areas under the ROC curve were 0.792, 0.658, 0.674, 0.736, 0.801, 0.735, 0.699, respectively. The sensitivity and the specificity of mean value in differentiation were 70.0% and 78.6%, respectively. And those for skewness, 1th percentile, 10th percentile, 50th percentile, 90th percentile and 99th percentile were 60.7% and 60.0%, 76.7% and 64.3%, 70.0% and 67.9%, 63.3% and 78.6%, 70.0% and 75.0%, 70.0% and 60.7%, respectively. Conclusion: ADC whole-tumor histogram analysis can be used as an important supplementary method to differentiate glioblastom from solitary brain metastasis.

关键词

脑肿瘤 / 胶质母细胞瘤 / 磁共振成像

Key words

Brain neoplasms / Glioblastoma / Magnetic resonance imaging

引用本文

导出引用
吕青青,张 勇,程敬亮,朱晨迪,汪卫建,许 珂. ADC全域直方图在鉴别胶质母细胞瘤和脑单发转移瘤中的应用价值[J]. 中国临床医学影像杂志. 2018, 29(12): 844-847 https://doi.org/10.12117/jccmi.2018.12.002
LV Qing-qing, ZHANG Yong, CHENG Jing-liang, ZHU Chen-di, WANG Wei-jian, XU Ke. ADC whole tumor histogram analysis for differentiating glioblastom from solitary brain metastasis[J]. Journal of China Clinic Medical Imaging. 2018, 29(12): 844-847 https://doi.org/10.12117/jccmi.2018.12.002
中图分类号: R739.41    R730.264    R445.2   

参考文献

[1]Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary[J]. Acta Neuropathol, 2016, 131(6): 803-820. [2]Maurer MH, Synowitz M, Badakshi H, et al. Glioblastoma multiforme versus solitary supratentorial brain metastasis: differentiation based on morphology and magnetic resonance signal characteristics[J]. Rofo, 2013, 185(3): 235-240. [3]Xu XQ, Hu H, Su GY, et al. Utility of histogram analysis of ADC maps for differentiating orbital tumors[J]. Diagn Interv Radiol, 2016, 22(2): 161-167. [4]Liang HY, Huang YQ, Yang ZX, et al. Potential of MR histogram analyses for prediction of response to chemotherapy in patients with colorectal hepatic metastases[J]. Eur Radiol, 2016, 26(7): 2009-2018. [5]王萍,翟昭华,唐光才,等. 扩散加权成像鉴别诊断恶性胶质瘤与单发脑转移瘤的b值优化[J]. 中国医学影像学杂志,2014,22(7):487-490. [6]张胜,李玉林,黄送. 增强T1WI直方图在胶质母细胞瘤和脑单发转移瘤鉴别诊断中的应用[J]. 中国医学影像学杂志,2017,25(2):89-92. [7]Yang G, Jones TL, Howe FA, et al. Morphometric model for discrimination between glioblastoma multiforme and solitary metastasis using three-dimensional shape analysis[J]. Magn Reson Med, 2016, 75(6): 2505-2516. [8]Byrnes TJ, Barrick TR, Bell BA, et al. Diffusion tensor imaging discriminates between glioblastoma and cerebral metastases in vivo[J]. NMR Biomed, 2011, 24(1): 54-60. [9]朱晨迪,张勇,程敬亮,等. MRI灰度直方图分析在髓母细胞瘤复发风险评估中的应用[J]. 中国介入影像与治疗学,2017,14(8):480-483. [10]Bull JG, Saunders DE, Clark CA. Discrimination of paediatric brain tumours using apparent diffusion coefficient histograms[J]. Eur Radiol, 2012, 22(2): 447-457. [11]Waldenberg C, Hebelka H, Brisby H, et al. MRI histogram analysis enables objective and continuous classification of intervertebral disc degeneration[J]. Eur Spine J, 2018, 27(5): 1042-1048. [12]Meyer HJ, Schob S, Münch B, et al. Histogram analysis of T1-weighted, T2-weighted, and postcontrast T1-weighted images in primary CNS lymphoma: correlations with histopathological findings-a preliminary study[J]. Mol Imaging Biol, 2018, 20(2): 318-323. [13]de Perrot T, Lenoir V, Domingo Ayllón M, et al. Apparent diffusion coefficient histograms of human papillomavirus-positive and human papillomavirus-negative head and neck squamous cell carcinoma: assessment of tumor heterogeneity and comparison with histopathology[J]. AJNR, 2017, 38(11): 2153-2160. [14]Liu Y, Xu X, Yin L, et al. Relationship between glioblastoma heterogeneity and survival time: an MR imaging texture analysis[J]. AJNR, 2017, 38(9): 1695-1701. [15]Choi YS, Ahn SS, Kim DW, et al. Incremental prognostic value of ADC histogram analysis over MGMT promoter methylation status in patients with glioblastoma[J]. Radiology, 2016, 281(1): 175-184.

基金

国家重点研发计划数字诊疗装备研发重点专项:MRI设备及临床应用评价研究(2016YFC0106900);MRI临床效果评价研究(2016YFC0106902)。

Accesses

Citation

Detail

段落导航
相关文章

/