目的:探讨T2-MRI全域灰度直方图分析鉴别儿童星形细胞瘤和室管膜瘤的价值。方法:回顾性分析我院经手术病理证实的85例儿童后颅窝肿瘤,其中星形细胞瘤36例、室管膜瘤49例。在MR T2轴位图像上包含肿瘤的每一层面用Mazda软件勾画感兴趣区并进行全域直方图分析,我们可以得到平均值、方差、偏度、峰度、第1,10,50,90,99百分位数等9个参数,并对获得的直方图参数特征分别进行统计学分析,获得2组肿瘤间差异有统计学意义的参数特征,并绘制ROC曲线以评价参数的诊断效能。结果:利用全域直方图提取出的9个直方图参数中,方差、偏度、峰度、第50百分位数具有统计学意义(P<0.05),其ROC曲线下面积分别为0.668、0.744、0.679、0.651,方差鉴别两组肿瘤的敏感度、特异度分别为61.1%和61.2%;偏度为69.4%和77.8%;峰度为65.3%和69.4%;第50百分位数为61.1%和61.2%。方差、偏度、峰度、第50百分位数鉴别两肿瘤的临界值分别为1688.239、-0.764、-0.310、137.938。结论:T2-MRI全域直方图分析可以提供更多量化信息特征,可作为鉴别儿童星形细胞瘤和室管膜瘤的辅助手段。
Abstract
Objective: To investigate the value of histogram analysis derived from T2-MRI imaging in differentiating astrocytoma from ependymoma in children. Methods: Retrospective analysis of pathologically confirmed 85 cases of posterior fossa tumors was performed, including 36 cases of astrocytoma and 49 cases of ependymoma. After drawing the region of interest on each slice of T2-MRI maps including tumor and doing the histogram analysis, we can get mean, variance, skewness, kurtosis, the 1st, 10th, 50th, 90th, 99th percentile characteristics. The histogram parameters were analyzed statistically to find out the characteristics of the significant differences between the two groups. Then, the ROC curve was drawn to assess diagnostic efficiency. Result: As for the 9 parameters extracted from histogram, the differences of the variance, skewness, kurtosis and the 50th percentiles between the two groups showed statistical significance(P<0.05). Areas under the ROC curve were 0.668, 0.744, 0.679, and 0.651, respectively. The sensitivity and the specificity of differentiation for variance were 61.1% and 61.2% respectively. For skewness, kurtosis and the 50th percentile, the sensitivity and the specificity were 69.4% and 77.8%, 65.3% and 69.4%, 61.1% and 61.2% respectively. Conclusion: T2-MRI whole tumor histogram analysis can provide more quantitative information characteristics, which provides a new method for the differential diagnosis of children with astrocytoma and ependymoma.
关键词
星形细胞瘤 /
室管膜瘤 /
儿童 /
磁共振成像
Key words
Astrocytoma /
Ependymoma /
Child /
Magnetic resonance imaging
中图分类号:
R730.264
R739.41
R445.2
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]卜春晓,张勇,程敬亮,等. ADC值在儿童常见小脑肿瘤鉴别诊断中的应用[J]. 实用放射学杂志,2015,31(6):998-1001.
[2]Jaremko JL, Jans LB, Coleman LT, et al. Value and limitations of diffusion-weighted imaging in grading and diagnosis of pediatric posterior fossa tumors[J]. Am J Neuroradiol, 2010, 31(9): 1613-1616.
[3]Bull JG, Saunders DE, Clark CA. Discrimination of paediatric brain tumours using apparent diffusion coefficient histograms[J]. Eur Radiol, 2012, 22(2): 447-457.
[4]Just N. Improving tumour heterogeneity MRI assessment with histograms[J]. Br J Cancer, 2014, 111(12): 2205-2213.
[5]朱晨迪,张勇,程敬亮,等. MRI灰度直方图分析在髓母细胞瘤复发风险评估中的应用[J]. 中国介入影像与治疗学,2017,14(8):480-483.
[6]Li Z, Mao Y, Huang W, et al. Texture-based classification of different single liver lesion based on SPAIR T2W MRI images[J]. BMC Med Imaging, 2017, 17(1): 42.
[7]Pereira JA, Rosado E, Bali M, et al. Pancreatic neuroendocrine tumors: correlation between histogram analysis of apparent diffusion coefficient maps and tumor grade[J]. Abdom Imaging, 2015, 40(8): 3122-3128.
[8]Falk A, FahlstrOm M, Rostrup E, et al. Discrimination between glioma grades Ⅱ and Ⅲ in suspected low-grade gliomas using dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging: a histogram analysis approach[J]. Neuroradiology, 2014, 56(12): 1031-1038.
[9]Kiefer B, Kiraly AP. Histogram analysis of whole-lesion enhancement in differentiating clear cell from papillary subtype of renal cell cancer[J]. Radiology, 2012, 265(3): 790-798.
[10]王君鑫,赵文露,杨毅,等. 动态增强MRI三维定量参数直方图诊断前列腺癌的价值[J]. 中华放射学杂志,2016,50(8):609-614.
[11]Zhang YD, Wang Q, Wu CJ, et al. The histogram analysis of diffusion-weighted intravoxel incoherent motion(IVIM) imaging for differentiating the Gleason grade of prostate cancer[J]. Eur Radiol, 2015, 25(4): 994-1004.
[12]严嘉仪,李美蓉,李玉华. 儿童颅内毛细胞型星形细胞瘤MRI表现[J]. 放射学实践,2013,28(7):746-749.
基金
2016年河南省医学科技攻关项目,项目批准号:201602030。