目的:探讨多参数磁共振成像(mp-MRI)膀胱影像报告和数据系统(VI-RADS)的评分一致性及其在膀胱癌肌层浸润中的诊断价值。方法:回顾性分析经手术病理证实的99例(共109个癌灶)膀胱癌患者的资料。根据肿瘤是否侵犯固有肌层分为非肌层浸润性膀胱癌(NMIBC,≤T1期)和肌层浸润性膀胱癌(MIBC,≥T2期)两组。由两位阅片者独立盲法对病灶mp-MRI图像进行VI-RADS评分。采用Kappa检验分析两位阅片者VI-RADS评分的一致性。绘制受试者工作特征曲线(ROC)分析VI-RADS评分诊断膀胱癌肌层浸润的效能。结果:两位阅片者VI-RADS评分一致性良好(Kappa值=0.721,P<0.001)。根据ROC曲线分析,以VI-RADS≥4分为阈值,两位阅片者的诊断曲线下面积(AUC)分别为0.912和0.925,敏感性为76.2%和71.4%,特异性为95.5%和95.5%,阳性预测值为80.0%和79.0%,阴性预测值为94.4%和93.3%。结论:VI-RADS评分具有良好的一致性和稳定性。mp-MRI VI-RADS评分对膀胱癌肌层浸润的诊断具有重要的价值,有较高的特异性和阴性预测值。
Abstract
Objective: To investigate interobserver agreement and diagnosis value of multiparametric MRI(mp-MRI) using vesical imaging-reporting and data system(VI-RADS) in detecting muscle-invasiveness of bladder cancer. Methods: Retrospective analysis of 99 patients(109 tumors in total) with pathologically confirmed bladder cancer was made in this study. The tumors was classified as non-muscle invasive bladder cancer(NMIBC) with stage T1 or lower and muscle invasive bladder cancer(MIBC) with stage T2 or higher. The mp-MRI images of tumors were scored by two radiologists independently with blind method by using VI-RADS. Interobserver agreement was evaluated by using Kappa test. Receivers operating characteristic(ROC) curves were used to describe the diagnostic efficiency of two radiologists. Results: Interobserver agreement of VI-RADS was good(Kappa value=0.721, P<0.001). According to ROC analysis, VI-RADS score 4 was found to be the best cut-off levels for discriminating NMIBC from MIBC by two radiologists, with the AUC of 0.912 and 0.925, the sensitivity of 76.2% and 71.4%, the specificity of 95.5% and 95.5%, the positive predictive value of 80.0% and 79.0%, the negative predictive value of 94.4% and 93.3%, respectively. Conclusion: The VI-RADS shows good consistency and stability for evaluation bladder cancer. Futhermore, VI-RADS demonstrates a good accuracy in the detection of muscle-invasiveness of bladder cancer, and provides a high specificity and negative predictive value.
关键词
膀胱肿瘤 /
磁共振成像
Key words
Bladder neoplasms /
Magnetic resonance imaging
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Babjuk M, Bohle A, Burger M, et al. EAU Guidelines on Non-Muscle-invasive Urothelial Carcinoma of the Bladder: Update 2016[J]. Eur Urol, 2017, 71(3): 447-461.
[2]Alfred WJ, Lebret T, Comperat EM, et al. Updated 2016 EAU Guidelines on Muscle-invasive and Metastatic Bladder Cancer[J]. Eur Urol, 2017, 71(3): 462-475.
[3]Woo S, Suh CH, Kim SY, et al. Diagnostic performance of MRI for prediction of muscle-invasiveness of bladder cancer: A systematic review and meta-analysis[J]. Eur J Radiol, 2017, 95: 46-55.
[4]Panebianco V, Narumi Y, Altun E, et al. Multiparametric Magnetic Resonance Imaging for Bladder Cancer: Development of VI-RADS(Vesical Imaging-Reporting And Data System)[J]. Eur Urol, 2018, 74(3): 294-306.
[5]韩苏军,张思维,陈万青,等. 中国膀胱癌发病现状及流行趋势分析[J]. 癌症进展,2013,11(1):89-95.
[6]Huang L, Kong Q, Liu Z, et al. The Diagnostic Value of MR Imaging in Differentiating T Staging of Bladder Cancer: A Meta-Analysis[J]. Radiology, 2018, 286(2): 502-511.
[7]El KM, Lalonde L, David J, et al. Breast imaging reporting and data system(BI-RADS) lexicon for breast MRI: interobserver variability in the description and assignment of BI-RADS category[J]. Eur J Radiol, 2015, 84(1): 71-76.
[8]Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADS Prostate Imaging-Reporting and Data System: 2015, Version 2[J]. Eur Urol, 2016, 69(1): 16-40.
[9]Cerny M, Bergeron C, Billiard JS, et al. LI-RADS for MR Imaging Diagnosis of Hepatocellular Carcinoma: Performance of Major and Ancillary Features[J]. Radiology, 2018, 288(1): 118-128.
[10]Thoeny HC, Bellin M, Comperat E, et al. Vesical Imaging-Reporting and Data System(VI-RADS): Added Value for Management of Bladder Cancer Patients?[J]. Eur Urol, 2018, 74(3): 307-308.
[11]Kobayashi S, Koga F, Yoshida S, et al. Diagnostic performance of diffusion-weighted magnetic resonance imaging in bladder cancer: potential utility of apparent diffusion coefficient values as a biomarker to predict clinical aggressiveness[J]. Eur Radiol, 2011, 21(10): 2178-2186.
[12]Ghafoori M, Shakiba M, Ghiasi A, et al. Value of MRI in local staging of bladder cancer[J]. Urol J, 2013, 10(2): 866-872.
[13]Wang HJ, Pui MH, Guo Y, et al. Multiparametric 3-T MRI for differentiating low-versus high-grade and category T1 versus T2 bladder urothelial carcinoma[J]. AJR, 2015, 204(2): 330-334.
[14]Wu LM, Chen XX, Xu JR, et al. Clinical value of T2-weighted imaging combined with diffusion-weighted imaging in preoperative T staging of urinary bladder cancer: a large-scale, multiobserver prospective study on 3.0-T MRI[J]. Acad Radiol, 2013, 20(8): 939-946.
[15]Rosenkrantz AB, Haghighi M, Horn J, et al. Utility of quantitative MRI metrics for assessment of stage and grade of urothelial carcinoma of the bladder: preliminary results[J]. AJR, 2013, 201(6): 1254-1259.
[16]Panebianco V, De Berardinis E, Barchetti G, et al. An evaluation of morphological and functional multi-parametric MRI sequences in classifying non-muscle and muscle invasive bladder cancer[J]. Eur Radiol, 2017, 27(9): 3759-3766.