帕金森病的静息态脑功能局部一致性研究

冯结映,黄 飚,钟小玲,杨万群,麦发泽

中国临床医学影像杂志 ›› 2015, Vol. 26 ›› Issue (12) : 844-847.

中国临床医学影像杂志 ›› 2015, Vol. 26 ›› Issue (12) : 844-847.
论著

帕金森病的静息态脑功能局部一致性研究

作者信息 +

A resting-state functional MRI study based on regional homogeneity in Parkinson’s disease

Author information +
文章历史 +

摘要

目的:研究在静息状态下帕金森病(PD)患者的脑区局部一致性(Regional homogeneity,Reho)变化特点,探讨PD的可能中枢病理生理改变。方法:采用静息态fMRI技术,收集35例PD患者及31例正常对照组(NC组)的BOLD数据,采用Reho的数据后处理方法进行分析,将PD组与NC组比较,获取有统计学意义的差异脑区。结果:排除一些伪影、头动较大、配准不佳的被试,最后入组PD组29例,NC组20例;所有被试均为右利手。与NC组相比,PD组Reho增高的脑区包括右侧楔前叶、左侧中央旁小叶、左侧额内侧回、左侧小脑后叶;PD组Reho减低的脑区包括右侧小脑后叶、右侧舌回、右侧颞中回、右侧额下回、右侧枕中回、右侧额上回、右侧中央前回、左侧壳核、左侧枕中回(P<0.05,K>29,AlphaSim校正)。结论:PD患者静息态脑功能存在广泛异常,主要表现为PD患者在纹状体-丘脑-皮质环路相关脑区、默认网络关键节点、辅助运动区等部位神经元活动异常改变。

Abstract

Objective: To investigate the changes of regional homogeneity in patients with Parkinson’s disease(PD), to study the central pathophysiological changes of PD. Methods: Totally 35 patients with PD and 31 normal persons as normal controls(NC) underwent resting-state BOLD-fMRI examination. The fMRI data were processed and analysed by DPARSF V2.0 soft and REST V1.8 soft. The Reho differences between PD group and NC group was statistically analyzed. Results: Compared with NC group, PD group had significantly increased Reho values in extensive brain regions including the right precuneus, left paracentral lobule, left interior frontal gyrus, left cerebellum posterior lobe; and the decreased regional activity in the right cerebellum posterior lobe, right lingual gyrus, right middle temporal gyrus, right inferior frontal gyrus, right middle occipital gyrus, right superior frontal gyrus, right precentral gyrus, left putamen, left middle occipital gyrus(P<0.05, K>29, AlphaSim corrected). Conclusions: The changes of Reho value in resting-state brain functional MRI of PD patients are extensive. The abnormal areas of neuronal activity included extensive cortex of striatal-thalamo-corti-cal loops, the default network key nodes, supplementary motor area and other parts.

关键词

帕金森病 / 磁共振成像

Key words

Parkinson disease / Magnetic resonance imaging

引用本文

导出引用
冯结映,黄 飚,钟小玲,杨万群,麦发泽. 帕金森病的静息态脑功能局部一致性研究[J]. 中国临床医学影像杂志. 2015, 26(12): 844-847
FENG Jie-ying, HUANG Biao, ZHONG Xiao-ling, YANG Wan-qun, MAI Fa-ze. A resting-state functional MRI study based on regional homogeneity in Parkinson’s disease[J]. Journal of China Clinic Medical Imaging. 2015, 26(12): 844-847
中图分类号: R742.5    R445.2   

参考文献

[1]Zang Y, Jiang T, Lu Y, et al. Regional homogeneity approach to fMRI data analysis[J]. Neuroimage, 2004, 22(2): 394-400.
[2]Hughes AJ, Daniel SE, Kilford L, et al. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases[J]. J Neurol Neurosurg Psychiatry, 1992, 55(3): 181-184.
[3]Chao-Gan Y, Yu-Feng Z. DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI[J]. Front Syst Neurosci, 2010, 4: 13.
[4]Song XW, Dong ZY, Long XY, et al. REST: a toolkit for resting-state functional magnetic resonance imaging data processing[J]. PLoS One, 2011, 6(9): e25031.
[5]Mhyre TR, Boyd JT, Hamill RW, et al. Parkinson’s disease[J]. Subcell Biochem, 2012, 65: 389-455.
[6]Wu T, Long X, Zang Y, et al. Regional homogeneity changes in patients with Parkinson’s disease[J]. Hum Brain Mapp, 2009, 30(5): 1502-1510.
[7]Fogelson N, Williams D, Tijssen M, et al. Different functional loops between cerebral cortex and the subthalmic area in Parkinson’s disease[J]. Cereb Cortex, 2006, 16(1): 64-75.
[8]Wu T, Hallett M. A functional MRI study of automatic movements in patients with Parkinson’s disease[J]. Brain, 2005, 128(Pt 10): 2250-2259.
[9]贾建平. 神经病学[M]. 2版. 北京:人民卫生出版社,2009:23-24.
[10]Yu H, Sternad D, Corcos DM, et al. Role of hyperactive cerebellum and motor cortex in Parkinson’s disease[J]. Neuroimage, 2007, 35(1): 222-233.
[11]刘虎,范国光,徐克,等. 帕金森病患者静息态下脑活动的局部一致性[J]. 中国医学影像技术,2011,27(10):1167-1171.
[12]Hilker R, Voges J, Weisenbach S, et al. Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease[J]. J Cereb Blood Flow Metab, 2004, 24(1): 7-16.
[13]Lewis MM, Slagle CG, Smith AB, et al. Task specific influences of Parkinson’s disease on the striato-thalamo-cortical and cerebello-thalamo-cortical motor circuitries[J]. Neuroscience, 2007, 147(1): 224-235.
[14]Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis[J]. Hum Brain Mapp, 2005, 26(1): 15-29.
[15]Greicius MD, Krasnow B, Reiss AL, et al. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis[J]. Proc Natl Acad Sci U S A, 2003, 100(1): 253-258.
[16]De Luca M, Beckmann CF, De Stefano N, et al. fMRI resting state networks define distinct modes of long-distance interactions in the human brain[J]. Neuroimage, 2006, 29(4): 1359-1367.
[17]van Eimeren T, Monchi O, Ballanger B, et al. Dysfunction of the default mode network in Parkinson disease: a functional magnetic resonance imaging study[J]. Arch Neurol, 2009, 66(7): 877-883.
[18]Braak H, Del Tredici K, Rub U, et al. Staging of brain pathology related to sporadic Parkinson’s disease[J]. Neurobiol Aging, 2003, 24(2): 197-211.
[19]Krajcovicova L, Mikl M, Marecek R, et al. The default mode network integrity in patients with Parkinson’s disease is levodopa equivalent dose-dependent[J]. J Neural Transm, 2011, 119(4): 443-454.

Accesses

Citation

Detail

段落导航
相关文章

/