目的:本研究通过基于纤维束示踪的空间统计方法(Tract-based spatial statistics,TBSS)分析主观认知下降(Subjective cognitive decline,SCD)人群的核磁弥散张量成像(Magnetic resonance diffusion tensor imaging,MR-DTI)的影像数据,观察SCD阶段是否存在脑结构异常。方法:收集27个临床诊断为SCD的患者为SCD组,另选取37个正常老年人为对照组(Normal controls,NC),他们的年龄、性别和教育互相匹配。采用TBSS分析方法对MR-DTI影像数据预处理后SCD组和NC组的各向异性分数(Fractional anisotropy,FA)、平均弥散系数(Mean diffusivity,MD)、径向弥散系数(Radial diffusivity,RD)、轴向弥散系数(Axial diffusivity,AxD)进行基于体素的全脑非参数统计学比较,并且分析与认知功能的相关性。结果:与正常对照组比较,SCD组FA值显著减小及MD、RD增高的纤维束主要位于胼胝体(膝部、体部、压部),双侧放射冠、上下纵束、内囊、额枕上下束、外囊、穹窿,右侧扣带回、丘脑后辐射和左侧钩束,AxD未发现异常。相关性分析发现MD与听觉词语学习测验(Auditory verbal learning test,AVLT)即刻及延迟记忆分数存在显著负相关(P<0.05),RD与AVLT延迟记忆分数存在负相关(P<0.05),未发现FA、MD和RD与MMSE和MoCA评分存在相关。结论:在SCD阶段,患者白质纤维损害已经存在,并且分布广泛,MD和RD与记忆功能相关联,提示在SCD阶段已经出现病理改变,并早于临床认知功能减退。
Abstract
Objective: To analyze the magnetic resonance diffusion tensor imaging(MR-DTI) datas in patients with subjective cognitive decline(SCD) using tract based spatial statistics(TBSS), to observe brain structural changes in the SCD phase. Methods: Twenty-seven SCD subjects and 37 age-, sex- and education-matched normal controls(NC) were employed in this study. Whole-brain diffusion tensor imaging(DTI) and a battery of neuropsychological tests, including mini-mental state examination(MMSE), montreal cognitive assessment(MoCA) and auditory verbal learning test(AVLT), were acquired on every subject. To figure out the white matter impairments regions of SCD, we conducted two sample t-test between SCD and NC by tract-based spatial statistics(TBSS) analysis on fractional anisotropy(FA) maps. Mean and max values of FA in the regions of white matter impairments were also obtained to investigate the relationship with the neuropsychological tests scores. Mean diffusivity(MD), radial diffusivity(RD) and axial diffusivity were analyzed in the similar manner. Results: Compared with NC, the SCD group showed decreased FA and increased MD and RD and unchanged AxD in corpus callosum, bilateral corona radiata, inferior longitudinal fasciculus, superior longitudinal fasciculus, internal capsule, superior fronto-occipital fasciculus, inferior fronto-occipital fasciculus, external capsule, fornix, and right cingulate gyrus, thalamic radiation, and left uncinate fasciculus. MD values were significantly negatively correlated with AVLT learning and delayed recall(P<0.05). RD values were negatively correlated with AVLT delayed recall(P<0.05). FA, MD and RD were not markedly correlated with MMSE and MoCA. Conclusions: Extensive white matter(WM) damage were observed in SCD. In addition, the MD, RD values were associated with memory function. It might indicated that the SCD subjects had suffered from the pathological changes, while the pathological changes were unable detected by conventional objective neuropsychological tests.
关键词
认知 /
脑损伤 /
磁共振成像
Key words
Cognition /
Brain injuries /
Magnetic resonance imaging
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Ballard C, Gauthier S, Corbett A, et al. Alzheimer’s disease[J]. Lancet, 2011, 377(9770): 1019-1031.
[2]Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease[J]. Alzheimers Dement, 2011, 7(3): 280-292.
[3]Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease[J]. Alzheimers Dement, 2011, 7(3): 270-279.
[4]Jessen F, Amariglio RE, Boxtel M, et al. Aconceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease[J]. Alzheimers Dement, 2014, 10(6): 844-852.
[5]Reisberg B, Prichep L, Mosconi L, et al. The pre-mild cognitive impairment, subjective cognitive impairment stage of Alzheimer’s disease[J]. Alzheimers Dement, 2008, 4(Suppl 1): S98-S108.
[6]贾建平,闫欣. 重视主观性认知减退研究[J]. 中华神经科杂志,2014,47(12):817-819.
[7]Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging[J]. Biophys, 1994, 66(1): 259-267.
[8]Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data[J]. Neuroimage, 2006, 31(4): 1487-1505.
[9]Smith SM. Fast robust automated brain extraction[J]. Hum Brain Mapp, 2002, 17(3): 143-155.
[10]Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL[J]. Neuroimage, 2004, 23(Suppl 1): S208-S219.
[11]Woolrich MW, Jbabdi S, Patenaude B, et al. Bayesian analysis of neuroimaging data in FSL[J]. Neuroimage, 2009, 45(Suppl 1): S173-S186.
[12]Winkler AM, Ridgway GR, Webster MA, et al. Permutation inference for the general linear model[J]. Neuroimage, 2014, 92: 381-397.
[13]Selnes P, Fjell AM, Gjerstad L, et al. White matter imaging changes in subjective and mild cognitive impairment[J]. Alzheimers Dement, 2012, 8(5 Suppl): S112-S121.
[14]Molinuevo J, Ripolles P, Simó M, et al. White matter changes in preclinical Alzheimer’s disease: a magnetic resonance imaging-diffusion tensor imaging study on cognitively normal older people with positive amyloid β protein 42 levels[J]. Neurobiol Aging, 2014, 35(12): 2671-2680.
[15]Liu J, Yin C, Xia S, et al. White matter changes in patients with amnestic mild cognitive impairment detected by diffusion tensor imaging[J]. PLos ONE, 2013, 8(3): e59440.
[16]Kiuchi K, Kitamura S, Taoka T, et al. Gray and white matter changes in subjective cognitive impairment, amnestic mild cognitive impairment and Alzheimer’s disease: a voxel-based analysis study[J]. PLos ONE, 2014, 9(8): e104007.
[17]Reisberg B, Franssen EH, Hasan SM, et al. Retrogenesis: clinical, physiologic, and pathologic mechanisms in brain aging, Alzheimer’s and other dementing processes[J]. Eur Arch Psychiatry Clin Neurosci, 1999, 249(3): 28-36.
[18]Stricker NH, Schweinsburg B, Delano-Woodd L, et al. Decreased white matter integrity in late-myelinating fiber pathways in Alzheimer’s disease supports retrogenesis[J]. Neuroimage, 2009, 45(1): 10-16.
[19]Petkov CI, Wu CC, Eberling JL, et al. Correlantes of memory function in community-dwelling elderly: The importance of white matter hyperintensities[J]. INT Neuropsycholsoc, 2004, 10(3): 371-381.
[20]de Leeuw FE, De Groot JC, Oudkerk M, et al. Aortic atherosclerosis at middle age predicts cerebral white matter lesions in the elderly[J]. Stroke, 2000, 31(2): 425-429.
基金
国家自然科学基金项目(31371007,81430037);北京市科委首都市民健康培育项目(Z131100006813022);凯力康医学研究项目(201206006);国家重点基础研究发展计划(973)2010CB732600;国家科技支撑计划2012BAI10B00。