目的:探讨超声微血流成像(Superb-microvascular imaging,SMI)技术检测颈动脉斑块内新生血管的价值。方法:选取预行颈动脉内膜剥脱术患者30例,颈动脉低回声、低回声为主混合回声及等回声斑块33个,术前行常规超声、SMI及超声造影(Contrast enhanced ultrasound,CEUS)检查,术后采用CD31免疫组化染色检测斑块内新生血管。结果:30例患者中,SMI检出新生血管24例,CEUS检出新生血管27例,病理检测33个斑块内均存在新生血管;SMI技术及CEUS检测低回声及低回声为主混合回声斑块内新生血管位置及密度与病理结果有较好一致性,其灵敏度分别为86.3%、90.9%;等回声斑块内新生血管显示较少,病理结果显示等回声斑块内虽均存在新生血管,但新生血管较前两者明显减少。结论:新生血管主要存在于低回声及低回声为主混合回声斑块中,SMI技术可检测斑块内新生血管,并同样可反映斑块内血流动力学特征,初步评估斑块稳定性。
Abstract
Objective: To investigate the value of ultrasound microflow imaging superb-microvascular imaging(SMI) in carotid plaques neovascularization. Methods: Thirty patients with carotid endarterectomy were enrolled. The hypoechoic, hybrid echo mainly hypoechoic plaques and other isoechoic plaque in total 33, preoperative routine ultrasound, SMI and contrast enhanced ultrasound(CEUS) examination, after operation immunohistochemical staining plaque neovascularization within CD31 were performed. Results: Of 30 patients, SMI detected 24 cases, CEUS detected 27 cases, the presence of pathological neovascularization were detected within 33 plaques; SMI technology and CEUS in the low echo and hybrid echo mainly hypoechoic plaques based location and density of vascular pathology in neonatal echo plaques have better consistency, the sensitivity was 86.3% and 90.9%. The other echo plaque neovascularization show less, pathology results showed that although neovascularization existed within all isoechoic plaque, but decreased significantly compared with two former. Conclusions: Neovascularization mainly exist in the low echo and hybrid echo mainly hypoechoic plaques, SMI technology can detect plaque neovascularization, and may reflect plaque hemodynamic characteristics.
关键词
颈动脉硬化 /
超声检查 /
多普勒 /
彩色
Key words
Carotid artery diseases /
Ultrasonography, Doppler, color
中图分类号:
 
R743
R543.5
R445.1
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Staub D, Partovi S, Schinkel AF, et al. Correlation of carotid artery atherosclerotic lesion echogenicity and severity at standard US with intraplaque neovascularization detected at contrast-enhanced US[J]. Radiology, 2011, 258(2): 618-626.
[2]Staub D, Schinkel AF, Coll B, et al. Contrast-enhanced ultrasound imaging of the vasa vasorum: from early atherosclersis to the identification of unstable plaques[J]. JACC Cardiovasc Imaging, 2010, 3(7): 761-771.
[3]Shah F, Balan P, Weinberg M, et al. Contrast-enhanced ultrasound imaging of atherosclerotic carotid plaque neovascularization[J]. Vasc Med, 2007, 12(4): 291-297.
[4]Stou G, Jander S, Sitzer M, et al. Unstable carotid stenosis: Aninflammatory disease[J]. Nervenarzt, 2010, 71(12): 955-9621.
[5]Purushothaman KR, Purushothamann M, Muntner P, et al. Inflammation, neovascularization and intra-plaque hemorrhage are associated with increased reparative collagen content: implication for plaque progression in diabetic atherosclerosis[J]. Vasc Med, 2011, 16(2): 103-108.
[6]Partovi S, Loebe M, Noon GP, et al. Detection of adventitial vasa vasorum and intraplaque neovascularization in carotid atherosclerotic lesions with contrast-enhanced ultrasound and their role in atherosclerosis[J]. Methodist Debakey Cardiovasc J, 2011, 7(4): 37-40.
[7]Kerwin WS. Carotid artery disease and stroke: assessing risk with vessel wall MRI[J]. ISRN Cardiol, 2012, 2012: 180710.
[8]Kitabata H, Tanaka T, Kubo T, et al. Relation of microchannel structure identified by optical coherence tomography to plaque vulnerability in patients with coronary artery disease[J]. Am J Cardiol, 2010, 105(12): 1673-1678.
[9]勇强,张蕾,袁嘉,等. 超声微血流成像技术诊断颈动脉斑块新生血管的价值[J]. 中国超声医学杂志,2014,30(12):1061-1063.
[10]Coli S, Magnoni M, Sangiorgi G, et al. Contrast enhanced ultrasound imaging of intraplaque neovascularization incarotid arteries[J]. J Am Coll Cardiol, 2008, 52(3): 223-230.
基金
黑龙江省教育厅科学技术研究项目(No.11551288);哈尔滨医科大学附属第一医院科研基金(No.2009B26)。