酰胺质子转移成像的临床应用及挑战

王晓明,郑 阳

中国临床医学影像杂志 ›› 2017, Vol. 28 ›› Issue (10) : 692-696.

中国临床医学影像杂志 ›› 2017, Vol. 28 ›› Issue (10) : 692-696.
述评

酰胺质子转移成像的临床应用及挑战

  • 王晓明,郑  阳
作者信息 +

Clinical application and challenges of amide proton transfer imaging

  • WANG Xiao-ming, ZHENG Yang
Author information +
文章历史 +

摘要

近年来,酰胺质子转移(Amide proton transfer,APT)成像作为一种新的MR成像方法,在临床应用中得到越来越多的关注。APT成像技术能够通过水信号变化探测体内游离蛋白质、多肽的酰胺质子与水质子的化学交换特征,可从分子水平上反映脑发育、脑肿瘤、中风、新生儿缺氧缺血脑病等组织内蛋白质及(或)pH的变化。目前APT成像除神经系统外,在多个系统中也得到应用。APT成像作为一种在体、无创、无需外源性对比剂的细胞分子水平MR成像技术,能够为临床提供更多的信息,会在今后的研究中得到进一步发展。

Abstract

 In recent years, amide proton transfer(APT) imaging, as a new modality of MR imaging, has attracted more and more attention in clinical applications. APT imaging can detect the exchange characteristics of amide protons in free proteins and peptides and water protons by means of water signal changes. APT imaging can reflect tumor, stroke, neonatal hypoxic-ischemic encephalopathy related to protein and pH at the molecular level. In addition to the nervous system, APT imaging has now been used in several other systems. APT imaging, as an in vivo, noninvasive, cellular and molecular level MR imaging modality without exogenous contrast agents, can provide more information for clinical studies and will be further developed in future studies.

关键词

中枢神经系统疾病 / 磁共振成像

Key words

Central nervous system diseases / Magnetic resonance imaging

引用本文

导出引用
王晓明,郑 阳. 酰胺质子转移成像的临床应用及挑战[J]. 中国临床医学影像杂志. 2017, 28(10): 692-696
WANG Xiao-ming, ZHENG Yang. Clinical application and challenges of amide proton transfer imaging[J]. Journal of China Clinic Medical Imaging. 2017, 28(10): 692-696
中图分类号: R742    R445.2   

参考文献

[1]Zhou J, Lal B, Wilson DA, et al. Amide proton transfer(APT) contrast for imaging of brain tumors[J]. Magn Reson Med, 2003, 50(6): 1120-1126.
[2]Zhou J, Payen JF, Wilson DA, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nat Med, 2003, 9(8): 1085-1090.
[3]Kauppinen RA, Kokko H, Williams SR. Detection of mobile proteins by proton nuclear magnetic resonance spectroscopy in the guinea pig brain ex vivo and their partial purification[J]. J Neurochem, 1992, 58(3): 967-974.
[4]Jokivarsi KT, Grohn HI, Grohn OH, et al. Proton transfer ratio, lactate, and intracellular pH in acute cerebral ischemia[J]. Magn Reson Med, 2007, 57(4): 647-653.
[5]Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system[J]. Physiol Rev, 2001, 81(2): 871-927.
[6]Deng W, Poretz RD. Oligodendroglia in developmental neurotoxicity[J]. Neurotoxicology, 2003, 24(2): 161-178.
[7]Bradl M, Lassmann H. Oligodendrocytes: biology and pathology[J]. Acta Neuropathol, 2010, 119(1): 37-53.
[8]Zheng Y, Wang X, Zhao X. Magnetization Transfer and Amide Proton Transfer MRI of Neonatal Brain Development[J]. Biomed Res Int, 2016, 2016: 3052723.
[9]Zhang H, Kang H, Zhao X, et al. Amide Proton Transfer(APT) MR imaging and Magnetization Transfer(MT) MR imaging of pediatric brain development[J]. Eur Radiol, 2016, 26(10): 3368-3376.
[10]Plum F, Price RW. Acid-base balance of cisternal and lumbar cerebrospinal fluid in hospital patients[J]. N Engl J Med, 1973, 289(25): 1346-1351.
[11]Kazemi H, Johnson DC. Regulation of cerebrospinal fluid acid-base balance[J]. Physiol Rev, 1986, 66(4): 953-1037.
[12]Siesjo BK, Katsura K, Mellergard P, et al. Acidosis-related brain damage[J]. Prog Brain Res, 1993, 96: 23-48.
[13]Richardson AJ, Cox IJ, Sargentoni J, et al. Abnormal cerebral phospholipid metabolism in dyslexia indicated by phosphorus-31 magnetic resonance spectroscopy[J]. NMR Biomed, 1997, 10(7): 309-314.
[14]郑阳,王晓明. 磁化传递成像和酰胺质子转移联合评价新生儿脑损伤的初步研究[J]. 磁共振成像,2017,8(3):189-195.
[15]Zheng Y, Wang XM. Measurement of Lactate Content and Amide Proton Transfer Values in the Basal Ganglia of a Neonatal Piglet Hypoxic-Ischemic Brain Injury Model Using MRI[J]. Am J Neuroradiol, 2017, 38(4): 827-834.
[16]Sun PZ, Zhou J, Sun W, et al. Detection of the ischemic penumbra using pH-weighted MRI[J]. J Cereb Blood Flow Metab, 2007, 27(6): 1129-1136.
[17]Song G, Li C, Luo X, et al. Evolution of Cerebral Ischemia Assessed by Amide Proton Transfer-Weighted MRI[J]. Front Neurol, 2017, 8: 67.
[18]Harston GW, Tee YK, Blockley N, et al. Identifying the ischaemic penumbra using pH-weighted magnetic resonance imaging[J]. Brain, 2015, 138(Pt 1): 36-42.
[19]Zhou J, Tryggestad E, Wen Z, et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides[J]. Nat Med, 2011, 17(1): 130-134.
[20]Togao O, Yoshiura T, Keupp J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades[J]. Neuro Oncol, 2014, 16(3): 441-448.
[21]Sakata A, Fushimi Y, Okada T, et al. Diagnostic performance between contrast enhancement, proton MR spectroscopy, and amide proton transfer imaging in patients with brain tumors[J]. J Magn Reson Imaging, 2017. [Epub ahead of print].
[22]Mehrabian H, Desmond KL, Soliman H, et al. Differentiation between Radiation Necrosis and Tumor Progression Using Chemical Exchange Saturation Transfer[J]. Clin Cancer Res, 2017, 23(14): 3667-3675.
[23]Bai Y, Lin Y, Zhang W, et al. Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas[J]. Oncotarget, 2017, 8(4): 5834-5842.
[24]Wang R, Li SY, Chen M, et al. Amide proton transfer magnetic resonance imaging of Alzheimer’s disease at 3.0 Tesla: a preliminary study[J]. Chin Med J (Engl), 2015, 128(5): 615-619.
[25]Wells JA, O’Callaghan JM, Holmes HE, et al. In vivo imaging of tau pathology using multi-parametric quantitative MRI[J]. Neuroimage, 2015, 111: 369-378.
[26]Li C, Wang R, Chen H, et al. Chemical Exchange Saturation Transfer MR Imaging is Superior to Diffusion-Tensor Imaging in the Diagnosis and Severity Evaluation of Parkinson’s Disease: A Study on Substantia Nigra and Striatum[J]. Front Aging Neurosci, 2015, 7: 198.
[27]Klomp DW, Dula AN, Arlinghaus LR, et al. Amide proton transfer imaging of the human breast at 7T: development and reproducibility[J]. NMR Biomed, 2013, 26(10): 1271-1277.
[28]Jia G, Abaza R, Williams JD, et al. Amide proton transfer MR imaging of prostate cancer: a preliminary study[J]. J Magn Reson Imaging, 2011, 33(3): 647-654.
[29]Zhou J, Payen JF, van Zijl PC. The interaction between magnetization transfer and blood-oxygen-level-dependent effects[J]. Magn Reson Med, 2005, 53(2): 356-366.
[30]Liu D, Zhou J, Xue R, et al. Quantitative characterization of nuclear overhauser enhancement and amide proton transfer effects in the human brain at 7 tesla[J]. Magn Reson Med, 2013, 70(4): 1070-1081.
[31]Scheidegger R, Vinogradov E, Alsop DC. Amide proton transfer imaging with improved robustness to magnetic field inhomogeneity and magnetization transfer asymmetry using saturation with frequency alternating RF irradiation[J]. Magn Reson Med, 2011, 66(5): 1275-1278.

基金

 国家自然科学基金(No.30570541,30770632,81271631);盛京医院自由研究者基金(No.2014-02)。

Accesses

Citation

Detail

段落导航
相关文章

/