目的:磁化传递效应成像是一种新的磁共振成像技术,是目前分子影像学领域的热门研究方向,核奥氏效应(Nuclear overhauser enhancement,NOE)以及酰胺质子转移(APT)是两种特殊的MT成像方法。本研究在7.0T磁共振上探究NOE及APT加权成像。方法:将生鸡蛋清、胎牛血清白蛋白(BSA)、柠檬汁置于试管,将C6胶质瘤细胞接种至大鼠右侧基底节区,7.0T磁共振扫描仪在连续波预饱和下的PRESS序列用不同的预饱和能量进行扫描,射频能量分别为0.6、0.8、1.0、1.3、1.6、2.0、3.0 μT。同时用连续被预饱和下的EPI序列扫描出正常鼠以及胶质瘤大鼠的MT图。以上偏置频率为5~-5 ppm,其中扫描参数:TR 6 000 ms,TE 26.51 ms,RF持续时间为4 s。结果:生鸡蛋清以及BSA均可以观察到比较明显的NOE及APT效应,而柠檬汁则观察不到NOE效应,只能观察到APT效应。且随着能量的增大,APT效应明显增强,而NOE效应明显减弱;在RF预饱和能量<1.0 μT时,NOE效应相对较大,而APT效应相对较小,当能量>1.0 μT时则表现为相反的结果。对于大鼠而言,表现为相同趋势。NOE及APT加权图(NOER及APTR)提示大鼠胶质瘤肿瘤中心区域NOE效应下降,APT效应增强。结论:NOE及APT的观察需要较恰当的参数,其中预饱和能量的大小对两种效应的影响较大。太小及太大的预饱和能量都会影响两种效应。本实验首先证实了富含蛋白质的物质可以观测到两种效应,并且观测到胶质瘤大鼠肿瘤区域NOE效应下降而APT效应增强,从而猜测肿瘤区域的效应变化可能与蛋白质分子的浓度有关。
Abstract
Objective: Magnetization transfer(MT) imaging has recently emerged as a new and hot field for MRI in cellular and molecular imaging. Nuclear overhauser enhancement(NOE) and amide proton transfer(APT) are two special types of MT imaging. Our study is to image NOE and APT weighted MT imaging at 7.0T. Methods: Fresh egg white, bovine serum albumin(BSA), fresh lemon juice were put in tubes respectively for pre-experiment. C6 glioma cells were cultivated to plant in the rats’ right basal ganglia for making tumor models. We scanned these tubes and rats using a continuous wave pre-saturating PRESS sequence(CW-PRESS sequence). B1 was 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 3.0 μT. At the same time, we acquired rats’ MT imaging using CW-EPI sequence. The RF offset ranges from 5~-5 ppm. The parameters were set up as follows: TR 6 000 ms, TE 26.51 ms, RF duration time 4 s. Results: NOE and APT effect were obviously observed in egg white and BSA, but NOE effect wasn’t observed in lemon juice. NOE signal declined and the APT signal heightened with the increase of B1, particularly when B1<1.0 μT, NOE signal was relatively strong and APT signal was relatively small. When B1> 1.0 μT, these showed the opposite results. This tendency corresponds to that of glioma rats whose NOE signal declined and APT signal heightened. Conclusion: There must be proper parameters to acquire NOE and APT images. B1 makes a big contribution to them, even too big or too little B1 can’t get clear NOE and APT images. We firstly demonstrated the protein made contribution to NOE and APT effect and then got the decision that NOE signal declined and the APT signal heightened in glioma. Hence, we suspected that these variations were related to protein concentration.
关键词
神经胶质瘤 /
磁共振成像
Key words
Glioma /
Magnetic resonance imaging
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Paech D, Zaiss M, Meissner JE, et al. Nuclear Overhauser enhancement mediated chemical exchange saturation transfer imaging at 7 Tesla in glioblastoma patients[J]. PLoS One, 2014, 9(8): e104181.
[2]Sun PZ, Lu J, Wu Y, et al. Evaluation of the dependence of CEST-EPI measurement on repetition time, RF irradiation duty cycle and imaging flip angle for enhanced pH sensitivity[J]. Phys Med Biol, 2013, 58(17): N229-N240.
[3]Sun PZ, Wang Y, Xiao G, et al. Simultaneous experimental determination of labile proton fraction ratio and exchange rate with irradiation radio frequency power-dependent quantitative CEST MRI analysis[J]. Contrast Media Mol Imaging, 2013, 8(3): 246-251.
[4]Zaiss M, Bachert P. Chemical exchange saturation transfer(CEST) and MR Z-spectroscopy in vivo: a review of theoretical approaches and methods[J]. Phys Med Biol, 2013, 58(22): R221.
[5]Zaiss M, Kunz P, Goerke S, et al. MR imaging of protein folding in vitro employing nuclear-Overhauser-mediated saturation transfer[J]. NMR Biomed, 2013, 26(12): 1815-1822.
[6]Zhou J, Hong X, Zhao X, et al. Apt-weighted and NOE-weighted image contrasts in glioma with different RF saturation powers based on magnetization transfer ratio asymmetry analyses[J]. Magn Reson Med, 2013, 70(2): 320-327.
[7]章桃,戴卓智,易美芝,等. 磁共振γ共氨基丁酸化换交换饱和转移成像的新技术研究[J]. 磁共振成像,2015,6(5):385-389.
[8]Dai Z, Ji J, Xiao G, et al. Magnetization transfer prepared gradient echo MRI for CEST imaging[J]. PLoS One, 2014, 9(11): e112219.
[9]Cai K, Haris M, Singh A, et al. Magnetic resonance imaging of glutamate[J]. Nat Med, 2012, 18(2): 302-306.
[10]Kogan F, Singh A, Debrosse C, et al. Imaging of glutamate in the spinal cord using gluCEST[J]. Neuroimage, 2013, 77(12): 262-267.
[11]Zijl PCMV, Jones CK, Jimin R, et al. MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging(glycoCEST)[J]. Proc Nati Acad Sci USA, 2007, 104(11): 4359-4364.
[12]Li Y, Sheth V R, Liu G, et al. A self-calibrating paracest MRI contrast agent that detects esterase enzyme activity[J]. Contrast Media Mol Imaging, 2011, 6(4): 219-228.
[13]Wu R, Liu C, Liu PK, et al. Improved Measurement of Labile Proton Concentration-Weighted Chemical Exchange Rate(K(Ws)) with Experimental Factor-Compensated and T(1)-Normalized Quantitative chemical exchange saturation transfer(CEST) MRI[J]. Contrast Media Mol Imaging, 2012, 7(4): 384-389.
[14]Gila, AA, Mcmahon MT, Walczak P, et al. Artificial reporter gene providing MRI contrast based on proton exchange[J]. Nat Biotechnol, 2007, 25(2): 217-219.
[15]Van Zijl PCM, Yadav NN. Chemical exchange saturation transfer(CEST): what is in a name and what isn’t?[J]. Magn Reson Med, 2011, 65(4): 927-948.
[16]Wen L, Regatte RR, Navon G, et al. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer(gagCEST)[J]. Proc Nati Acad Sci USA, 2008, 105(7): 2266-2270.
[17]Van Zijl PCM, Zhou J, Mori N, et al. Mechanism of magnetization transfer during on-resonance water saturationa new approach to detect mobile proteins, peptides, and lipids[J]. Magn Reson Med, 2003, 49(3): 440-449.
[18]Swanson SD. Protein mediated magnetic coupling between lactate and water protons[J]. J Magn Reson, 1998, 135(1): 248-255.
[19]Estilaei MR, Matson GB, Meyerhoff DJ. Indirect imaging of ethanol via magnetization transfer at high and low magnetic fields[J]. Magn Reson Med, 2003, 49(4): 755-759.
[20]Zhou J, Hong X, Zhao X, et al. APT-weighted and NOE-weighted image contrasts in glioma with different RF saturation powers based on magnetization transfer ratio asymmetry analyses[J]. Magn Reson Med, 2013, 70(2): 320-327.
[21]Zhou J, Lal B, Wilson DA, et al. Amide proton transfer(APT) contrast for imaging of brain tumors[J]. Magn Reson Med, 2003, 50(6): 1120-1126.
[22]Chamberlain MC, Murovic JA, Levin VA. Absence of contrast enhancement on CT brain scans of patients with supratentorial malignant gliomas[J]. Neurology, 1988, 38(9): 1371-1374.
[23]肖红,肖刚,吴仁华. 化学交换饱和转移传递磁共振成像建模与仿真[J]. 兰州理工大学学报,2014,40(4):71-75.
[24]Tang X, Dai Z, Xiao G, et al. Nuclear Overhauser enhancement-mediated magnetization transfer imaging in glioma with different progression at 7T[J]. ACS Chem Neurosci, 2016, 8(1): 60-66.
[25]梁志莹,梁碧玲. 胶质瘤影像诊断的进步与目前的局限[J]. 广东医学,2017,38(1):20-23.
基金
国家自然科学基金重点项目(编号:30930027)。