BOLD MRI对糖尿病大鼠肾脏早期损伤的动态评估研究#br#

过川根1,张 兰2,汪启东1,王照明1,徐 莹1,肖文波1

中国临床医学影像杂志 ›› 2017, Vol. 28 ›› Issue (10) : 742-746.

中国临床医学影像杂志 ›› 2017, Vol. 28 ›› Issue (10) : 742-746.
腹部影像学

BOLD MRI对糖尿病大鼠肾脏早期损伤的动态评估研究#br#

  • 过川根1,张  兰2,汪启东1,王照明1,徐  莹1,肖文波1
作者信息 +

Evaluation of early renal injury development in diabetic rats using BOLD MRI

  • GUO Chuan-gen1, ZHANG Lan2, WANG Qi-dong1, WANG Zhao-ming1, XU Ying1, XIAO Wen-bo1
Author information +
文章历史 +

摘要

目的:磁共振血氧水平依赖成像(BOLD MRI)对糖尿病大鼠模型及正常对照组进行肾内氧和代谢动态评估,确定BOLD MRI成像对糖尿病肾脏早期损伤评价的意义。方法:将造模成功的62只糖尿病大鼠作为实验组(DN组,n=62),正常10只大鼠作为对照组(NC组,n=10)。NC组作为BOLD MRI扫描基线,DN组在造模成功后3,7,14,21,28,35,42,49,56,63和70天成像。获得肾脏皮髓质R2*值(CR2*,MR2*)及髓皮质R2*值比值(MCR)。同时检测DN组大鼠微量蛋白尿(UAE)以及大鼠肾脏病理标本评估肾小球硬化指数(GSI),系膜容积(Vvmes),肾小球毛细血管面积(Svcap)的检测。结果:DN组CR2*和MR2*值逐渐上升,与正常对照组比较有显著差异。在35天达到最高值(MR2*=(43.79±1.46) s-1,CR2*=(33.95±0.34) s-1);之后有所下降至第70天为MR2*=(41.61±0.95) s-1,CR2*=(33.17±0.69) s-1,但仍高于NC组(P<0.01)。MCR亦呈先升后降的动态过程,42天达到高峰1.32,70天时为1.25。DN组大鼠的生化指标以及病理学检查数据均有增高,与对照组比较呈显著差异。其中大鼠成模第7天DN组与NC组的UAE出现显著差异(P<0.01)。结论:BOLD MRI可以对糖尿病引起的肾脏损伤的动态过程进行氧代谢方面的无创性评估,且比微量白蛋白能更早的反应出肾脏病理生理变化;本实验获得MCR的动态改变可能提示肾脏损伤从功能性高渗代偿进入器质性病变如系膜基质增生、肾小球硬化等病变。

Abstract

Objective: To observe changes in renal oxygenation levels using BOLD MRI, and to evaluate the usefulness of BOLD MRI in development of early diabetic renal injury. Methods: A total of 62 diabetic rats with successful modeling were used as the experimental group(DN group, n=62), and 10 normal rats served as the normal control group(NC group, n=10). The NC group was used as the baseline for the BOLD MRI scan, and the rats in the DN group underwent MR imaging at 3, 7, 14, 21, 28, 35, 42, 49, 56, 63, and 70 days after modeling. Renal cortical and medullary R2*(CR2*, MR2*) values were measured and R2* ratio between medulla and cortex(MCR) was calculated. The urine albumin concentration and histopathological examination(GSI, Vvmes, Svcap) were evaluated at different time points. Results: CR2* and MR2* values of DN group were significantly higher than those of NC group. Those R2* values raised gradually and reached the peak at 35 days(CR2*=(33.95±0.34) s-1, MR2*=(43.79±1.46) s-1, then dropped gradually at 70 days(CR2*=(33.17±0.69) s-1, MR2*=(41.61±0.95) s-1), MCR in DN group gradually increased to the peak of 1.32 at 42 days and then decreased to 1.25 at 70 days. UAE of DN group increased gradually, it was significantly higher than that of NC group at 7 days(P<0.01). The GSI and Vvmes and Svcap were higher in DN group compared to NC group(P<0.01). Conclusions: BOLD MRI can noninvasively evaluate the renal hypoxia in diabetes and detect diabetic renal injury earlier than UAE. The dynamic changes of MCR in our study may suggest that renal injury may be from functional hypertonic compensation into organic lesions such as mesangial proliferation and glomerulosclerosis.

关键词

糖尿病肾病 / 磁共振成像

Key words

Diabetic nephropathies / Magnetic resonance imaging

引用本文

导出引用
过川根1,张 兰2,汪启东1,王照明1,徐 莹1,肖文波1. BOLD MRI对糖尿病大鼠肾脏早期损伤的动态评估研究#br#[J]. 中国临床医学影像杂志. 2017, 28(10): 742-746
GUO Chuan-gen1, ZHANG Lan2, WANG Qi-dong1, WANG Zhao-ming1, XU Ying1, XIAO Wen-bo1. Evaluation of early renal injury development in diabetic rats using BOLD MRI[J]. Journal of China Clinic Medical Imaging. 2017, 28(10): 742-746
中图分类号: R587.2    R692    R445.2   

参考文献

[1]Miyata T, Takizawa S, van Ypersele de Strihou C. Hypoxia. 1. Intracellular sensors for oxygen and oxidative stress: novel therapeutic targets[J]. Am J Physiol Cell Physiol, 2011, 300(2): C226-231.
[2]Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation[J]. Proc Natl Acad Sci USA, 1990, 87(24): 9868-9872.
[3]Thulbom KR, Watertom JC, Matitiews PM, et al. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at thish field[J]. Bioehim Biophys Acta, 1982, 714(2): 265-270.
[4]Ries M, Basseau F, Tyndal B, et al. Renal diffusion and BOLD MRI in experimental diabetic nephropathy[J]. J Magn Reson Imaging, 2003, 17(1): 104-113.
[5]Dos Santos EA, Li LP, Ji L, et al. Early changes with diabetes in renal medullary hemodynamics as evaluated by fiberoptic probes and BOLD magnetic resonance imaging[J]. Invest Radiol, 2007, 42(3): 157-162.
[6]Yin WJ, Liu F, Li XM, et al. Noninvasive evaluation of renal oxygenation in diabetic nephropathy by BOLD-MRI[J]. Eur J Radiol, 2012, 81(7): 1426-1431.
[7]Inoue T, Kozawa E, Okada H, et al. Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging[J]. J Am Soc Nephrol, 2011, 22(8): 1429-1434.
[8]Zhen JZ, Kumar R, Banerjee S, et al. Blood Oxygen Level-Dependent(BOLD) MRI of Diabetic Nephropathy: Preliminary Experience[J]. J Magn Reson Imaging, 2011, 33(3): 655-660.
[9]Lopes GS, Lemos CCS, Mandarim-De-Lacerda CA, et al. Effect of unilateral nephrectomy on renal function of diabetic rats[J]. Histol Histopathol, 2004, 19(4): 1085-1088.
[10]Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas[J]. Physiol Res, 2001, 50(6): 537-546.
[11]Alhaider AA, Korashy HM, Sayed-Ahmed MM, et al. Metformin attenuates streptozotocin-induced diabetic nephropathy in rats through modulation of oxidative stress genes expression[J]. Chem Biol Interact, 2011, 192(3): 233-242.
[12]Pottumarthi VP, Robert RE, Franklin HE. Noninvasive Evaluation of Intrarenal Oxygenation With BOLD MRI[J]. Circulation, 1996, 94(12): 3271-3275.
[13]Thoeny HC, Zumstein D, Simon-Zoula S, et al. Functional Evaluation of Transplanted Kidneys with Diffusion-weighted and BOLD MR Imaging: Initial Experience[J]. Radiology, 2006, 241(3): 812-821.
[14]Pedersen M, Dissing TH, Morkenborg J, et al. Validation of quantitative BOLD MRI measurements in kidney: application to unilateral ureteral obstruction[J]. Kidney Int, 2005, 67(6): 2305-2312.
[15]Baines A, Ho P. Glucose stimulates O2 consumption, NOS, and Na/H exchange in diabetic rat proximal tubules[J]. Am J Physiol Renal Physiol, 2002, 283(2): F286-293.
[16]Palm F, Teerlink T, Hansell P. Nitric oxide and kidney oxygenation[J]. Curr Opin Nephrol Hypertens, 2009, 18(1): 68-73.
[17]Mogensen CE, Schmitz A, Christensen CK. Comparativei renal pathysiology relevant to IDDM and NIDDM patients[J]. Diabetes Meatball Rev, 1988, 4(5): 453-483.
[18]Yan SF, Ramasamy R, Schmidt AM. Receptor for AGE(RAGE)and its ligandscast into leading roles in diabetes and the inflammatory response[J]. J Mol Med(Berl), 2009, 87(3): 235-247.
[19]Ehlermann P, Eggers K, Bierhaus A, et al. Increased proinflammatory endothelial response to S100A8/A9 after preactivation through advanced glycation end products[J]. Cardiovascular Diabetology, 2006, 5: 6.
[20]Li LP, Li BS, Storey P, et al. Effect of free radical scavenger (tempol) on intrarenal oxygenation in hypertensive rats as evaluated by BOLD MRI[J]. J Magn Reson Imaging, 2005, 21(3): 245-248.

基金

浙江省自然基金(2015C33138);浙江省科技厅社会公益项目(LZ16H180001)。

Accesses

Citation

Detail

段落导航
相关文章

/