目的:应用氢质子磁共振波谱(1H-MRS)测量颞叶癫痫(TLE)患者双侧海马区主要代谢物N-乙酰天门冬氨酸(NAA),γ-氨基丁酸(GABA)及谷氨酸/谷氨酰胺复合物(GLx)的浓度变化,以期能更好的理解癫痫的发病机制,同时为TLE定位致痫灶提供更多的影像学支持。方法:对10例临床诊断TLE患者及14例正常志愿者进行双侧海马的常规MRI和1H-MRS扫描,测量NAA,Cr,Cho,GABA及GLx在患侧海马、对侧海马及正常对照组之间的浓度变化及各代谢物之间的相互关系。结果:患侧海马NAA较对侧海马及正常对照组均显著减低(P=0.001,P=0.007)。以年龄为控制因素做偏相关分析,患侧组NAA与GLx呈负相关(P=0.016),GABA与GLx亦呈负相关(P=0.024)。结论:TLE患者患侧海马NAA减低,可以为定位致痫灶提供依据。患侧海马区GABA和GLx较正常对照组存在不同改变,并且存在负相关性代谢变化,局部变化可能与癫痫的发作和治疗状态有关。
Abstract
Objective: To measure the changes of bilateral hippocampal metabolite concentrations in patients with temporal lobe epilepsy(TLE) by using proton magnetic resonance spectroscopy(1H-MRS). The main metabolites that we studied include N-acetylaspartate(NAA), γ-aminobutyric acid(GABA) and glutamate/glutamine compounds(GLx). These changes of the metabolite concentrations can make us further understand the pathogenesis of epilepsy, and provide more imaging support for locating the epileptic foci in TLE. Methods: Ten patients with TLE and 14 normal controls were studied. All subjects underwent bilateral hippocampal conventional MRI and 1H-MRS scans. The metabolite concentrations of NAA, Cr, Cho, GABA and GLx in the ipsilateral hippocampus were compared with the concentrations in the contralateral hippocampus and the normal control group. Results: NAA was significantly lower in the ipsilateral hippocampus than in the contralateral hippocampus and normal control group(P=0.001, P=0.007, respectively). By partial correlation analysis with the controlling factors of age, GLx and NAA were negatively correlated(P=0.016), and GABA and GLx are negatively correlated(P=0.024) in the ipsilateral hippocampus. Conclusion: NAA reduced in ipsilateral hippocampus in patients with temporal lobe epilepsy, which can provide the basis for the localization of epileptic foci. GABA and GLx in ipsilateral hippocampus have different changes compared with the normal control group with a negative correlation in metabolic changes, the local variations may be related with seizure and treatment status of epilepsy.
关键词
癫痫 /
颞叶 /
海马 /
磁共振成像
Key words
Epilepsy, frontal lobe /
Hippocampus /
Magnetic resonance imaging
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]张雪宁,郭琪. 功能性磁共振对颞叶癫痫手术的指导意义[J]. 中华临床医师杂志:电子版,2012,6(9):2290-2293.
[2]李鹏. 颞叶癫痫与海马硬化的研究现状[J]. 医学信息,2014,27(7):654-655.
[3]Maton B, Londono A, Sawrie S, et al. Reproducibility of proton magnetic resonance spectroscopy imaging measurements of normal human hippocampus at 1.5T: clinical implications[J]. J Neruoimaging, 2001, 11(2): 194-201.
[4]Hsu YY, Chen MC, Lim KE, et al. Reproducibility of hippocampal single-voxel proton MR spectroscopy and chemical shift imaging[J]. AJR, 2001, 176(2): 529-536.
[5]Gerez M, Sada A, Tello A. Amygdalar hyperactivity, a fear-related link between panic disorder and mesiotemporal epilepsy[J]. Clin EEG Neurosci, 2011, 42(1): 29-39.
[6]Soares DP, Law M. Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications[J]. Clin Radiol, 2009, 64(1): 12-21.
[7]Simister RJ, McLean MA, Barker GJ, et al. Proton MR spectroscopy of metabolite concentrations in temporal lobe epilepsy and effect of temporal lobe resection[J]. Epil Res, 2009, 83(2-3): 168-176.
[8]岳伟,张雅静,管雅琳,等. 内侧颞叶癫痫患者海马硬化的影像学研究[J]. 中国神经精神疾病杂志,2014,40(10):607-611.
[9]王志群,李坤成,王亮,等. 颞叶癫痫定位诊断的磁共振波谱研究[J]. 放射学实践,2007,22(4):371-375.
[10]Connelly A, Van Paesschen W, Porter DA, et al. Proton magnetic resonance spectroscopy in MRI-negative temporal lobe epilepsy[J]. Neurology, 1998, 51(1): 61-66.
[11]Napolitano A, Kockenberger W, Auer DP. Reliable gamma aminobutyric acid measurement using optimized PRESS at 3T[J]. Magn Reson Med, 2013, 69(6): 1528-1533.
[12]李敏,孔德虎,许奇,等. 颞叶癫痫大鼠不同时期海马和皮层氨基酸类递质的变化[J]. 安徽医科大学学报,2010,45(2):135-138.
[13]Engstrsm ER, Hillered L, Flink R, et al. Extracellular amino acid levels measured with intracerebral microdialysis in the model of posttraumatic epilepsy induced by intracoaical iron injection[J]. Epil Res, 2001, 43(2): 135-144.
[14]Doelken MT, Hammen T, Bogner W, et al. Alterations of intracerebral γ-aminobutyric acid(GABA) levels by titration with levetiracetam in patients with focal epilepsies[J]. Epilepsia, 2010, 51(8): 1477-1482.
[15]Petroff OA, Hyder F, Rothman DL, et al. Topiramate rapidly raises brain GABA in epilepsy patients[J]. Epilepsia, 2001, 42(4): 543-548.
[16]Petroff OA. GABA and glutamate in the human brain[J]. Neuroscientist, 2002, 8(6): 562-573.
[17]Silva-Brum LF, Emanuelli T, Souza DO, et al. Effects of linalool on glutamate release and uptake in mouse cortical synaptosomes[J]. Neurochem Res, 2001, 26(3): 191-194.
[18]Eid T, Williamson A, Lee TS, et al. Glutamate and astrocytes—key players in human mesial temporal lobe epilepsy?[J]. Epilepsia, 2008, 49(Suppl 2): 42-52.
[19]Cavus I, Kasoff WS, Cassaday MP, et al. Extracellular metabolites in the cortex and hippocampus of epileptic patients[J]. Ann Neurol, 2005, 57(2): 226-235.
[20]Woermann FG, McLean MA, Bartlett PA, et al. Short echo time single-voxel 1H magnetic resonance spectroscopy in magnetic resonance imaging-negative temporal lobe epilepsy: different biochemical profile compared with hippocampal sclerosis[J]. Ann Neurol, 1999, 45(3): 369-376.