磁共振动态增强扫描定量分析方法评价肺部肿块良恶性初步研究

史昭菲,刘绪忠,柏根基

中国临床医学影像杂志 ›› 2017, Vol. 28 ›› Issue (7) : 475-479.

中国临床医学影像杂志 ›› 2017, Vol. 28 ›› Issue (7) : 475-479.
胸部影像学

磁共振动态增强扫描定量分析方法评价肺部肿块良恶性初步研究

  • 史昭菲,刘绪忠,柏根基
作者信息 +

A preliminary study of diagnosing lung neoplasms with quantitative analysis of DCE-MRI

  • SHI Zhao-fei, LIU Xu-zhong, BO Gen-ji
Author information +
文章历史 +

摘要

目的:探讨动态增强磁共振(DCE-MRI)扫描定量参数测定对鉴别肺部肿块良恶性的可行性。方法:77例肺部肿块患者行3.0T MR动态增强扫描,并经手术或穿刺活检病理证实,测量定量参数:容量转移常数(Ktrans)、速率常数(Kep)和血管外细胞外间隙容积比(ve),分别对良性病变、恶性病变定量参数值进行统计学分析;最后绘制ROC曲线。结果:恶性病变组:低分化腺癌Ktrans、Kep、ve均值分别为(0.270±0.089) min-1、(0.926±0.475) min-1、0.340±0.144,低分化鳞癌分别为(0.268±0.066) min-1、(0.997±0.464) min-1、0.293±0.091,小细胞癌均值为(0.238±0.074) min-1、(0.617±0.369) min-1、0.412±0.312;良性病变组Ktrans、Kep、ve均值分别为(0.190±0.084) min-1、(0.569±0271) min-1、0.392±0.207。良、组行独立样本t检验,Ktrans、Kep值均有统计学差异(P值均<0.05),ve值无统计学差异(P值>0.05),良性病灶组分别与低分化腺癌、低分化鳞癌组行成组设计方差分析, Ktrans及Kep差异均有统计学意义(P值均<0.05),ve均无统计学差异(P值均>0.05);低分化腺癌与低分化鳞癌Ktrans、Kep、ve差异均无统计学意义(P值均>0.05)。良性病灶组及恶性病灶组ROC曲线下面积分别为0.741、0.715,敏感性分别为88.4%、39.5%;特异性分别为54.2%、95.8%。结论:DCE-MRI定量参数Ktrans、Kep值鉴别诊断肺部肿块具有可行性,有助于对肺癌及肺部良性病灶进行鉴别。

Abstract

Objective: To investigate the feasibility of quantitative analysis parameters of dynamic contrast-enhanced MRI (DCE-MRI) in diagnosis of lung neoplasms and assess the differences of quantitative MR pharmacokinetic parameters volume transfer constant(Ktrans), exchange rate constant(Kep) and extravascular extracellular volume fraction(ve) in lung neoplasms. Methods: Three Tesla MR examinations were performed in 77 patients confirmed by biopsy and the quantitative MR pharmaeokinetic parameters including Ktrans, Kep and ve were obtained. Independent two sample t test was used between benign and malignant lung lesions. Finally, the areas under the ROC curve(AUC) of Ktrans, Kep and ve between malignant and benign lesions were compared. Results: The mean Ktrans, Kep and ve of poorly differentiated adenocarcinoma(n=26) were(0.270±0.089) min-1, (0.926±0.475) min-1 and (0.340±0.144). The mean Ktrans, Kep and ve of poorly differentiated squamous cell carcinoma(n=13) were (0.268±0.066) min-1, (0.997±0.464) min-1 and (0.293±0.091). The mean Ktrans, Kep and ve of small-cell lung cancer were (0.238±0.074) min-1, (0.617±0.369) min-1 and (0.412±0.312). The mean Ktrans, Kep and ve of benign lesions(n=24) were (0.190±0.084) min-1, (0.569±0.271) min-1 and (0.392±0.207). There was significant difference between malignant and benign lesions in either Ktrans or Kep(t=3.697, 3.883, respectively, P<0.05). There was no significant difference between malignant and benign lesions in ve(t=1.341, P>0.05). Ktrans and Kep values of benign lesions were significantly lower than those of squamous cell carcinoma and  adenocarcinoma(both P<0.05). No significant difference was observed between squamous cell carcinoma and adenocarcinoma  in Ktrans or Kep(both P>0.05). The AUCs of Ktrans and Kep between malignant and benign lesions were 0.741 and 0.715. The sensitivity of Ktrans and Kep were 88.4% and 39.5%, and the specificity of Ktrans and Kep were 54.2% and 95.8%. Conclusion: The differential diagnosis of benign and malignant lung lesions by Ktrans and Kep is applicable.

关键词

肺肿瘤 / 活组织检查 / 针吸 / 磁共振成像

Key words

Lung neoplasms / Biopsy, needle / Magnetic resonance imaging

引用本文

导出引用
史昭菲,刘绪忠,柏根基. 磁共振动态增强扫描定量分析方法评价肺部肿块良恶性初步研究[J]. 中国临床医学影像杂志. 2017, 28(7): 475-479
SHI Zhao-fei, LIU Xu-zhong, BO Gen-ji. A preliminary study of diagnosing lung neoplasms with quantitative analysis of DCE-MRI[J]. Journal of China Clinic Medical Imaging. 2017, 28(7): 475-479
中图分类号: R734.2    R445.2   

参考文献

[1]Westerhof JP, Fischer U, Moritz JD, et al. MR imaging of mammographically detected clustered microcalcifications: is there any value?[J]. Radiology, 1998, 207(3): 675-681.
[2]Ohno Y, Hatabu H, Takenaka D, et al. Solitary pulmonary nodules: potential role of dynamic MR imaging in management initial experience[J]. Radiology, 2002, 224(2): 503-511.
[3]Schaefer JF, Vollmar J, Schick F, et al. Solitary pulmonary nodules: dynamic contrast-enhanced MR imaging-perfusion differences in malignant and benign lesions[J]. Radiology, 2004, 232(2): 544-553.
[4]Tofts PS, Brix G, Buckley DL. Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusible tracer: standardized quantities and symbols[J]. J Magn Reson Imaging, 1999, 10(3): 223-232.
[5]Choyke PL, Dwyer AJ, Knopp MV, et al. Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging[J]. J Magn Reson Imaging, 2003, 17(5): 509-520.
[6]Baek  HM, Yu  HJ, Chen JH, et al. Quantitative correlation between 1H MRS and dynamic contrast-enhanced MRI of human breast cancer[J]. Magn Reson Imaging, 2008, 26(4): 523-531.
[7]李春媚,陈敏,李飒英,等. 3.0T MR动态增强扫描定量分析诊断前列腺癌的初步研究[J]. 中华放射学杂志,2011,45(1):50-54.
[8]Hou Z, Wang Y, Thng CH, et al. Automatic region-of-interest segmentation and registration of dynamic contrast-enhanced images of colorectal tumors[J]. Phys Med Biol, 2014, 59(23): 7361-7381.
[9]Geith T, Biffar A, Schmidt G, et al. Quantitative analysis of acute benign and malignant vertebral body fractures using dynamic contrast-enhanced MRI[J]. AJR, 2013, 200(6): 635-643.
[10]Port RE, Knopp MV, Hoffmann U, et al. Multi-compartment analysis of gadolinium chelate kinetics: blood-tissue exchange in mammary tumors as monitored by dynamic MR imaging[J]. J Magn Reson Imaging, 1999, 10(3): 233-241.
[11]Yu CW, Shih TT, Hsu CY, et al. Correlation between pancreatic microcirculation and type 2 diabetes in patients with coronary artery disease: dynamic contrast-enhanced MR imaging[J]. Radiology, 2009, 252(3): 704-711.
[12]Amarnath J, Sangeeta T, Mehta SB. Role of quantitative pharmacokinetic parameter(transfer constant: Ktrans) in the characterization of breast lesions on MRI[J]. Ind J Radiol Imaging, 2013, 23(1): 19-25.
[13]Vos EK, Litjens GJ, Kobus T, et al. Assessment of prostate cancer aggressiveness using dynamic contrast-enhanced magnetic resonance imaging at 3T[J]. Eur Urol, 2013, 64(3): 448-455.
[14]Barrett T, Brechbiel M, Bemardo M, et al. MRI of tumor angiogenesis[J]. J Magn Reson Imaging, 2007, 26(2): 235-249.
[15]Baik SH, Jin GY, Han YM, et al. Usefulness of tissue permeability factor in differentiating benign and malignant pulmonary lesions on dynamic contrast-enhanced MRI[J]. J Kor Soc Radiol, 2013, 69(1): 57-65.
[16]Ng CS, Raunig DL, Jackson EF, et al. Reproducibility of perfusion parameters in dynamic contrast enhanced MRI of lung and liver tumors: effect on estimates of patient sample size in clinical trials and on individual patient responses[J]. AJR, 2010, 194(2): 134-140.
[17]Langer DL, der Kwast TH, Evans AJ, et al. Prostate cancer detection with multi-parametric MRI: logistic regression analysis of quantitative T2 diflusion-weighted imaging, and dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2009, 30(2): 327-334.
[18]Tofs PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging[J]. J Magn Reson Imaging, 1997, 7(1): 91-101.
[19]Lowry M, Zelhof B, Liney GP, et al. Analysis of prostate DCE-MRI comparison of fast exchange limit and fast exchange regimen pharmacokinetic models in the discrimination of malignant from normal tissue[J]. Invest Radiol, 2009, 44(9): 577-584.
[20]Wang Y, Huang W, Panicek DM. Feasibility of using limited-population-based arterial input function for pharmacokinetic modeling of osteosarcoma dynamic contrast-enhanced MRI data[J]. Magn Reson Med, 2008, 59(5): 83-89.
[21]Kono R, Fujimoto K, Terasaki H, et al. Dynamic MRI of solitary pulmonary nodules: comparison of enhancement patterns of malignant and benign small peripheral lung lesions[J]. AJR, 2007, 188(1): 26-36.

Accesses

Citation

Detail

段落导航
相关文章

/