目的:研究CT定量参数在3组慢性阻塞性肺疾病(COPD)表型中的差异及其与肺功能的相关性,确定临床可行性CT应用参数。方法:对91例稳定期COPD患者进行呼吸气双相HRCT扫描及临床肺功能检查。根据肺气肿分级和有无支气管管壁增厚将研究对象进行分型:A型、E型和M型。分析CT定量参数(%LAA-950ins、%LAA-856exp、RVC-856to-950和E/I-ratio MLD)及肺功能参数在3组COPD表型中的差异,CT定量参数与肺功能参数之间做相关性分析。结果:本研究中A型50例,E型23例,M型18例。FEV1、FEV1%、FEV1/FVC值在A型、E型和M型组中依次减少。%LAA-950ins、%LAA-856exp、RVC-856to-950和E/I-ratio MLD值在A型、E型和M型组中依次增加。A型组中,%LAA-950ins与肺功能参数之间无相关性,%LAA-856exp、RVC-856to-950、E/I-ratio MLD分别与肺功能参数间呈负相关,且有统计学意义。其中,E/I-ratio MLD与FEV1%之间的负相关性最强(γ=-0.588,P=0.000)。E型和M型组中,各个CT定量参数与肺功能参数之间呈显著负相关(P<0.01)。RVC-856to-950与FEV1之间的负相关性最强(γ=-0.669,P=0.000)。结论:3组COPD表型的CT定量参数不同,CT肺气肿指标(%LAA-950ins)、气体陷闭指标(%LAA-856exp、RVC-856to-950和E/I-ratio MLD)可以作为评估COPD肺功能的有效参数。
Abstract
Objective: To study the differences of CT quantitative parameters in the three phenotypes of chronic obstructive pulmonary disease(COPD), and correlations with pulmonary function parameters, so as to ascertain the clinical feasibility of CT applicative parameters. Methods: Ninety one patients with stable COPD underwent the paired inspiratory and expiratory HRCT scans and pulmonary function tests. The subjects were classified into the three phenotypes according to the rank of emphysema and with or without the bronchial wall thickening: A phenotype, E phenotype and M phenotype. The differences of pulmonary function parameters and CT quantitative parameters(%LAA-950ins、%LAA-856exp、RVC-856to-950 and E/I-ratio MLD) in the three phenotypes of COPD were analyzed. The correlations between CT quantitative and pulmonary function parameters were evaluated. Results: There were three phenotypes in this study: A phenotype(n=50), E phenotype(n=23) and M phenotype(n=18). The values of FEV1, FEV1% and FEV1/FVC were reduced successively in the A phenotype, E phenotype and M phenotype. The values of %LAA-950ins, %LAA-856exp, RVC-856to-950 and E/I-ratio MLD were increased successively in the A phenotype, E phenotype and M phenotype. In the A phenotype group, %LAA-950ins had no correlation with pulmonary function parameters, %LAA-856exp, RVC-856to-950 and E/I-ratio MLD had statistically negative correlations with pulmonary function parameters separately. Among them, E/I-ratio MLD had the strongest negative correlation with FEV1%(γ=-0.588, P=0.000). In the E phenotype and M phenotype groups, CT quantitative parameters had statistically significant negative correlations with pulmonary function parameters(P<0.01). RVC-856to-950 had the strongest negative correlation with FEV1(γ=-0.669, P=0.000). Conclusion: CT quantitative parameters were different in the three phenotypes of COPD. CT index of emphysema(%LAA-950ins) and CT indexes of gas trapping (%LAA-856exp, RVC-856to-950 and E/I-ratio MLD) could be used as effective parameters for evaluating pulmonary function of COPD.
关键词
肺疾病 /
慢性阻塞性 /
体层摄影术 /
螺旋计算机
Key words
Pulmonary disease, chronic obstructive /
Tomography, spiral computed
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Lynch DA, Al-Qaisi ML. Quantitative CT in COPD[J]. J Thorac Imaging, 2013, 28(5): 284-290.
[2]Zhong N, Wang C, Yao W, et al. Prevalence of chronic obstructive pulmonary disease in China: a large, population-based survey[J]. Am J Respir Crit Care Med, 2007, 176(8): 753-760.
[3]Mets OM, de Jong PA, van Ginneken B, et al. Quantitative computed tomography in COPD: possibilities and limitations[J]. Lung, 2012, 190(2): 133-145.
[4]Xie X, de Jong PA, Oudkerk M, et al. Morphological measurements in computed tomography correlate with airflow obstruction in chronic obstructive pulmonary disease: systematic review and meta-analysis[J]. Eur Radiol, 2012, 22(10): 2085-2093.
[5]Fujimoto K, Kitaguchi Y, Kubo K, et al. Clinical analysis of chronic obstructive pulmonary disease phenotypes classified using high-resolution computed tomography[J]. Respirology, 2006, 11(6): 731-740.
[6]Van Tho N, Wada H, Ogawa E, et al. Recent findings in chronic obstructive pulmonary disease by using quantitative computed tomography[J]. Respir Investig, 2012, 50(3): 78-87.
[7]Regan EA, Hokanson JE, Murphy JR, et al. Genetic epidemiology of COPD(COPD Gene) study design [J]. COPD, 2010, 7(1): 32-43.
[8]Madani A, Zanen J, de Maertelaer V, et al. Pulmonary emphysema: objective quantification at multi-detector row CT—comparison with macroscopic and microscopic morphometry[J]. Radiology, 2006, 238(3): 1036-1043.
[9]Lee YK, Oh YM, Lee JH, et al. Quantitative assessment of emphysema, air trapping, and airway thickening on computed tomography[J]. Lung, 2008, 186(3): 157-165.
[10]Ostridge K, Wilkinson TM. Present and future utility of computed tomography scanning in the assessment and management of COPD[J]. Eur Respir J, 2016, 48(1): 216-228.
[11]Matsuoka S, Kurihara Y, Yagihashi K, et al. Quantitative assessment of peripheral airway obstruction on paired expiratory/inspiratory thin-section computed tomography in chronic obstructive pulmonary disease with emphysema[J]. J Comput Assist Tomogr, 2007, 31(3): 384-389.
[12]Matsuoka S, Kurihara Y, Yagihashi K, et al. Quantitative assessment of air trapping in chronic obstructive pulmonary disease using inspiratory and expiratory volumetric MDCT[J]. AJR, 2008, 190(3): 762-769.
[13]Mets OM, Zanen P, Lammers JW, et al. Early identification of small airways disease on lung cancer screening CT: comparison of current air trapping measures[J]. Lung, 2012, 190(6): 629-633.
[14]夏艺,管宇,范丽,等. 慢性阻塞性肺疾病患者不同HRCT表现型的临床及CT容积量化的分析[J]. 实用放射学杂志,2013,29(7):1067-1070.
[15]Nambu A, Zach J, Schroeder J, et al. Quantitative computed tomography measurements to evaluate airway disease in chronic obstructive pulmonary disease: Relationship to physiological measurements, clinical index and visual assessment of airway disease[J]. Eur J Radiol, 2016, 85(11): 2144-2151.
[16]Kitaguchi Y, Fujimoto K, Kubo K, et al. Characteristics of COPD Phenotypes classified according to the findings of HRCT[J]. Respir Med, 2006, 100(10): 1742-1752.
基金
上海市普陀区卫生系统自主创新科研资助项目(普KW15203)。