临床前期阿尔茨海默病的功能MRI研究进展

盛 灿1,刘 芳1,韩 璎2

中国临床医学影像杂志 ›› 2018, Vol. 29 ›› Issue (5) : 359-362.

中国临床医学影像杂志 ›› 2018, Vol. 29 ›› Issue (5) : 359-362.
综述

临床前期阿尔茨海默病的功能MRI研究进展

  • 盛  灿1,刘  芳1,韩  璎2
作者信息 +

Progress of research on preclinical Alzheimer’s disease based on functional MRI

  • SHENG Can1, LIU Fang1, HAN Ying2
Author information +
文章历史 +

摘要

阿尔茨海默病(Alzheimer’s disease,AD)是一个连续的病理生理学过程,在临床症状出现前的数十年,人脑就已产生AD特异性的病理学改变。近年来,借助先进的神经影像学技术和生化检测手段,研究人员逐步发现了各种AD相关的生物学标志物,使得在临床前期诊断AD并实施干预成为可能。功能MRI是目前最常用的脑功能成像技术,可揭示疾病早期的脑功能活动特征。本文就近年来基于功能MRI的临床前期AD研究进行综述。

Abstract

Alzheimer’s disease(AD) is considered as a continuously pathophysiological process. Special pathological changes of AD has occurred decades prior to the onset of clinical symptoms. Currently, due to the advanced neuroimaging techniques and biochemical tests, variant AD-related biomarkers are gradually identified, making it possible to diagnose AD in the preclinical stage and further intervene the process of the disease. Functional MRI(fMRI), which is helpful to reveal the early brain functional activities in preclinical AD, is the most common form of functional imaging techniques. This review is about researches involving preclinical AD based on fMRI in recent years.

关键词

阿尔茨海默病 / 磁共振成像

Key words

Alzheimer disease / Magnetic resonance imaging

引用本文

导出引用
盛 灿1,刘 芳1,韩 璎2. 临床前期阿尔茨海默病的功能MRI研究进展[J]. 中国临床医学影像杂志. 2018, 29(5): 359-362
SHENG Can1, LIU Fang1, HAN Ying2. Progress of research on preclinical Alzheimer’s disease based on functional MRI[J]. Journal of China Clinic Medical Imaging. 2018, 29(5): 359-362
中图分类号: R742    R445.2   

参考文献

[1]Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimers Dement, 2011, 7(3): 280-292.
[2]Dubois B, Hampel H, Feldman HH, et al. Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria[J]. Alzheimers Dement, 2016, 12(3): 292-323.
[3]Wang J, Tan L, Yu JT. Prevention Trials in Alzheimer's Disease: Current Status and Future Perspectives[J]. J Alzheimers Dis, 2016, 50(4): 927-945.
[4]Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI[J]. Magn Reson Med, 1995, 34(4): 537-541.
[5]李瑜霞,李永秋,孙宇,等. 源于阿尔茨海默病的轻度认知障碍患者脑结构及静息态功能磁共振研究进展[J]. 中国临床医学影像杂志,2016,27(2):131-134.
[6]Selkoe DJ. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior[J]. Behav Brain Res, 2008, 192(1): 106-113.
[7]Hedden T, Van Dijk KR, Becker JA, et al. Disruption of functional connectivity in clinically normal older adults harboring amyloid burden[J]. J Neurosci, 2009, 29(40): 12686-12694.
[8]Sheline YI, Price JL, Yan Z, et al. Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus[J]. Proc Natl Acad Sci USA, 2010, 107(24): 11020-11025.
[9]Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria[J]. Lancet Neurol, 2007, 6(8): 734-746.
[10]Dubois B, Feldman HH, Jacova C, et al. Revising the definition of Alzheimer's disease: a new lexicon[J]. Lancet Neurol, 2010, 9(11): 1118-1127.
[11]Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria[J]. Lancet Neurol, 2014, 13(6): 614-629.
[12]Jack CR, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade[J]. Lancet Neurol, 2010, 9(1): 119-128.
[13]Jack CR, Vemuri P, Wiste HJ, et al. Evidence for ordering of Alzheimer disease biomarkers[J]. Arch Neurol, 2011, 68(12): 1526-1535.
[14]Besson FL, La Joie R, Doeuvre L, et al. Cognitive and Brain Profiles Associated with Current Neuroimaging Biomarkers of Preclinical Alzheimer's Disease[J]. J Neurosci, 2015, 35(29): 10402-10411.
[15]Sheline YI, Raichle ME. Resting state functional connectivity in preclinical Alzheimer's disease[J]. Biol Psychiatry, 2013, 74(5): 340-347.
[16]Jack CR, Holtzman DM. Biomarker modeling of Alzheimer's disease[J]. Neuron, 2013, 80(6): 1347-1358.
[17]Sperling RA, Dickerson BC, Pihlajamaki M, et al. Functional alterations in memory networks in early Alzheimer's disease[J]. Neuromolecular Med, 2010, 12(1): 27-43.
[18]Das SR, Pluta J, Mancuso L, et al. Increased functional connectivity within medial temporal lobe in mild cognitive impairment[J]. Hippocampus, 2013, 23(1): 1-6.
[19]Edelman K, Tudorascu D, Agudelo C, et al. Amyloid-Beta Deposition is Associated with Increased Medial Temporal Lobe Activation during Memory Encoding in the Cognitively Normal Elderly[J]. Am J Geriatr Psychiatry, 2017, 25(5): 551-560.
[20]Leal SL, Landau SM, Bell RK, et al. Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline[J]. Elife, 2017, 6.
[21]Huijbers W, Mormino EC, Wigman SE, et al. Amyloid deposition is linked to aberrant entorhinal activity among cognitively normal older adults[J]. J Neurosci, 2014, 34(15): 5200-5210.
[22]Oh H, Jagust WJ. Frontotemporal network connectivity during memory encoding is increased with aging and disrupted by beta-amyloid[J]. J Neurosci, 2013, 33(47): 18425-18437.
[23]Oh H, Steffener J, Razlighi QR, et al. Aβ-related hyperactivation in frontoparietal control regions in cognitively normal elderly[J]. Neurobiol Aging, 2015, 36(12): 3247-3254.
[24]Oh H, Steffener J, Razlighi QR, et al. β-Amyloid Deposition Is Associated with Decreased Right Prefrontal Activation during Task Switching among Cognitively Normal Elderly[J]. J Neurosci, 2016, 36(6): 1962-1970.
[25]Supekar K, Menon V, Rubin D, et al. Network analysis of intrinsic functional brain connectivity in Alzheimer's disease[J]. PLoS Comput Biol, 2008, 4(6): e1000100.
[26]Sheline YI, Raichle ME, Snyder AZ, et al. Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly[J]. Biol Psychiatry, 2010, 67(6): 584-587.
[27]Song Z, Insel PS, Buckley S, et al. Brain amyloid-β burden is associated with disruption of intrinsic functional connectivity within the medial temporal lobe in cognitively normal elderly[J]. J Neurosci, 2015, 35(7): 3240-3247.
[28]Buckner RL, Sepulcre J, Talukdar T, et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease[J]. J Neurosci, 2009, 29(6): 1860-1873.
[29]Krajcovicova L, Marecek R, Mikl M, et al. Disruption of resting functional connectivity in Alzheimer's patients and at-risk subjects[J]. Curr Neurol Neurosci Rep, 2014, 14(10): 491.
[30]Simic G, Babic M, Borovecki F, et al. Early failure of the default-mode network and the pathogenesis of Alzheimer's disease[J]. CNS Neurosci Ther, 2014, 20(7): 692-698.
[31]Elman JA, Madison CM, Baker SL, et al. Effects of Beta-Amyloid on Resting State Functional Connectivity Within and Between Networks Reflect Known Patterns of Regional Vulnerability[J]. Cereb Cortex, 2016, 26(2): 695-707.
[32]Drzezga A, Becker JA, Van Dijk KR, et al. Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden[J]. Brain, 2011, 134(Pt 6): 1635-1646.
[33]Schultz AP, Chhatwal JP, Hedden T, et al. Phases of Hyperconnectivity and Hypoconnectivity in the Default Mode and Salience Networks Track with Amyloid and Tau in Clinically Normal Individuals[J]. J Neurosci, 2017, 37(16): 4323-4331.
[34]Gordon BA, Zacks JM, Blazey T, et al. Task-evoked fMRI changes in attention networks are associated with preclinical Alzheimer's disease biomarkers[J]. Neurobiol Aging, 2015, 36(5): 1771-1779.
[35]盛灿,夏明睿,韩璎. 遗忘型轻度认知障碍的静息态功能MRI研究进展[J]. 中国临床医学影像杂志,2015,26(7):528-530.
[36]Sheline YI, Morris JC, Snyder AZ, et al. APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Abeta42[J]. J Neurosci, 2010, 30(50): 17035-17040.

Accesses

Citation

Detail

段落导航
相关文章

/