目的:研究MRI增强全域灰度直方图分析对三种常见的儿童后颅窝肿瘤(室管膜瘤、星形细胞瘤、髓母细胞瘤)的鉴别诊断价值。方法:回顾性分析我院进行脑部MRI检查经并病理证实的76例儿童后颅窝肿瘤患者,其中室管膜细胞瘤25例,星形细胞瘤26例,髓母细胞瘤25例,分别在三组MR增强矢状位图像上每一层肿瘤层面用Mazda软件勾画感兴趣区并进行灰度全域直方图分析,对获得的三组直方图参数特征分别进行统计学分析,比较各参数的统计学意义。结果:通过灰度全域直方图分析得到的9个参数中,均值、变异度、偏度、第10百分位数、第50百分位数及第99百分位数这6个参数差异有统计学意义(P均<0.05),其余3个参数峰度、第1百分位数、第90百分位数在三组间无显著性差异(P均>0.05)。结论:MRI全域灰度直方图分析可作为鉴别儿童常见的三种后颅窝肿瘤的重要手段,第50百分位数与变异度具有较高诊断效能。
Abstract
Objective: To study the value of whole tumors enhanced MRI gray histogram analysis of differential diagnosis in three common pediatric posterior fossa tumors(ependymoma, astrocytoma, medulloblastoma). Methods: A retrospective analysis was conducted by brain MRI examination and pathology diagnosis of 76 cases of posterior fossa tumors in children in our hospital. Among them, there were 25 cases of ependymoma, 26 cases of astrocytoma, 25 cases of medulloblastoma. Respectively, we drew the region of interest(ROI) in the enhanced MR sagittal images of three groups on each layer of tumor level by using Mazda software and analyzed the whole tumors gray histogram, then performed statistical analysis on the three sets of parameters obtained from histograms to find out statistical difference of each parameter. Results: Through histogram analysis of 9 parameters, the difference of these 6 parameters were statistically significant(all P<0.05), including mean, variance, skewness, Perc.10%, Perc.50% and Perc.99%, the remaining 3 parameters, including kurtosis, Perc.01%, Perc.90% had no significant difference(all P>0.05). Conclusion: The MRI gray histogram analysis based on whole tumors is helpful for the identification of three kinds of pediatric posterior fossa tumors,the Perc.50% and variance had a high diagnostic efficiency.
关键词
室管膜瘤 /
星形细胞瘤 /
髓母细胞瘤 /
儿童 /
磁共振成像
Key words
Ependymoma /
Astrocytoma /
Medulloblastoma /
Child /
Magnetic resonance imaging
中图分类号:
R739.41
R730.264
R445.2
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Orphanidou-Vlachou E, Vlachos N, Davies NP, et al. Texture analysis of T1- and T2-weighted MR images and use of probabilistic neural network to discriminate posterior fossa tumors in children[J]. NMR Biomed, 2014, 27(6): 632-639.
[2]李娅,李蒙蒙,张勇,等. 磁共振图像的纹理分析在儿童常见后颅窝肿瘤鉴别诊断中的应用[J]. 中华医学杂志,2016,96(23):1853-1856.
[3]Umanodan T, Fukukura Y, Kumagae Y, et al. ADC histogram analysis for adrenal tumor histogram analysis of apparent diffusion coefficient in differentiating adrenal adenoma from pheochromocytoma[J]. J Magn Reson Imaging, 2017, 45(4): 1195-1203.
[4]Jung SC, Yeom JA, Kim JH, et al. Glioma: Application of histogram analysis of pharmacokinetic parameters from T1-weighted dynamic contrast-enhanced MR imaging to tumor grading[J]. AJNR, 2014, 35(6): 1103-1110.
[5]Wang S, Kim S, Zhang Y, et al. Determination of grade and subtype of meningiomas by using histogram analysis of diffusion-tensor imaging metrics[J]. Radiology, 2012, 262(2): 584-592.
[6]Gutierrez DR, Awwad A, Meijer L, et al. Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors[J]. AJNR, 2014, 35(5): 1009-1015.
(下转161页)
(上接157页)
[7]Xu XQ, Li Y, Hong XN, et al. Radiological in determinate vestibular Schwannoma and meningioma in cerebellopontine angle area: differentiating using whole-tumor histogram analysis of apparent diffusion coefficient[J]. Int J Neurosci, 2017, 127(2): 183-190.
[8]Ryu YJ, Choi SH, Park SJ, et al. Glioma: application of whole-tumor texture analysis of diffusion-weighted imaging for the evaluation of tumor heterogeneity[J]. PLoS One, 2014, 30(9): e108335.
[9]Bull JG, Saunders DE, Clark CA. Discrimination of pediatric brain tumors using apparent diffusion coefficient histograms[J]. Eur Radiol, 2012, 22(2): 447-457.
[10]邓小林,文明,吴晓凤,等. ADC比值鉴别诊断儿童后颅窝肿瘤[J]. 中国医学影像技术,2015,31(11):1620-1624.
[11]Catalaa I, Henry R, Dillon WP, et al. Perfusion, diffusion and spectroscopy values in newly diagnosed cerebral gliomas[J]. NMR Biomed, 2006, 19(4): 463-475.
[12]刘杨颖秋,尚劲,田诗云,等. 利用肿瘤全域表观扩散系数信号强度直方图鉴别Ⅱ级与Ⅲ级胶质瘤[J]. 磁共振成像,2017,8(4):276-282.
[13]陈鑫,魏新华,杨蕊梦,等. 常规MRI纹理分析鉴别脑胶质母细胞瘤和单发转移瘤的价值[J]. 中华放射学杂志,2016,50(3):186-190.
[14]Lu SS, Kim SJ, Kim N, et al. Histogram analysis of apparent diffusion coefficient maps for differentiating primary CNS lymphomas from tumefactive demyelinating lesions[J]. AJR, 2015, 204(4): 827-834.
[15]Wagner MW, Narayan AK, Bosemani T, et al. Histogram analysis of diffusion tensor imaging parameters in pediatric cerebellar tumors[J]. J Neuroimaging, 2016, 26(3): 360-365.
基金
2016年河南省医学科技攻关项目(项目批准号:201602030)。