目的:分析PET/CT显像与肺癌组织VEGF表达在预测非小细胞肺癌术后转归的价值。方法:经手术病理证实的非小细胞肺癌患者40例,术前做全身PET/CT检查,术后取肿块组织做VEGF免疫组化检测,采用Mattern半定量分析方法对肿块组织VEGF表达进行总评分。根据临床及病理学特征进行分组,比较不同分组间的SUVmax及VEGF表达评分的差异,随访术后患者无病生存时间,分析SUVmax与VEGF表达评分的相关性及影响预后的因素。结果:肿瘤大小、分化程度影响SUVmax及VEGF表达评分(P<0.05),肺癌组织SUVmax及VEGF表达评分显著相关(r=0.394,P<0.01)。Kaplan-Meier分析显示SUVmax、肿块VEGF评分为患者生存期的影响因素,SUVmax≤7.3的无病生存时间较>7.3长(P<0.05),VEGF评分≤3组无病生存时间也高于VEGF评分>3组。Cox多因素分析显示SUVmax、TNM分期为患者生存的独立预后影响因子。结论:SUVmax及VEGF表达与肿瘤的分化程度及复发潜能存在一定关系, SUVmax及VEGF表达评分可考虑作为评估患者预后的参考指标。
?眼关键词?演 癌,非小细胞肺;氟脱氧葡萄糖F18;正电子发射断层显像术
Abstract
Objective: To evaluate the value of PET/CT imaging and VEGF expression in predicting postoperative outcome of non-small cell lung cancer. Methods: Forty patients with non-small cell lung cancer underwent preoperative whole-body PET/CT imaging examination. Tissue samples were collected for VEGF immunohistochemical analysis. Mattern’s semi-quantitative analysis was used to evaluate the VEGF expression in the tumor tissue. According to the clinical and pathological characteristics, the differences of SUVmax and VEGF expression scores among different groups were compared and their correlations were analyzed. Results: SUVmax and VEGF expression scores were significantly correlated with tumor size and differentiation (P<0.05). SUVmax and VEGF expression scores in lung cancer were significantly correlated(r=0.394, P<0.01). Kaplan-Meier analysis showed that SUVmax and VEGF scores were the influencing factors of patient survival. The disease-free survival time of SUVmax ≤7.3 was longer than >7.3 groups(P<0.05). The disease-free survival time of VEGF score ≤3 was also higher than that of VEGF score >3 groups. Cox multivariate analysis showed that SUVmax and TNM staging were independent prognostic factors for patient survival. Conclusion: SUVmax and VEGF expression are related to tumor differentiation and recurrence. SUVmax and VEGF expression scores can be considered as index to evaluate the prognosis of patients.
关键词
癌 /
非小细胞肺 /
氟脱氧葡萄糖F18 /
正电子发射断层显像术
Key words
Carcinoma, non-small-cell lung /
Fluorodeoxyglucose F18 /
Positron-emission tomography
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Al-Shahrabani F, Vallbhmer D, Angenendt S, et al. Surgical strategies in the therapy of non-small cell lung cancer[J]. World J Clin Oncol, 2014, 5(4): 595-603.
[2]Volpi S, Ali JM, Tasker A, et al. The role of positron emission tomography in the diagnosis, staging and response assessment of non-small cell lung cancer[J]. Ann Transl Med, 2018, 6(5): 95.
[3]李艳,代永亮,段小艺,等. 肺癌18F-FDG PET/CT的SUV、淋巴结转移及远处转移的分析[J]. 实用放射学杂志,2013,29(11):1762-1765.
[4]杨桂芬,朱虹. 第7版肺癌TNM分期及影像学在其评估中的价值[J]. 放射学实践,2012,27(7):803-806.
[5]Matern J, Koomagi R, Volm M. Vascular endothelial growth factor experssion angiogenesis in non-small cell lung carcinomas[J]. Int J Oncol, 1995, 6(5): 1059-1062.
[6]Suzawa N, Ito M, Qiao S, et al. Assessment of factors influencing FDG uptake in non-small cell lung cancer on PET/CT by investigating histological differences in expression of glucose transporters 1 and 3 and tumor size[J]. Lung Cancer, 2011, 72(2): 191-198.
[7]Thie JA, Smith GT, Hubner KF, et al. 2-deoxy-2-[F-18]fluoro-D-glucose-positron emission tomography sensitivity to serum glucose: a survey and diagnostic applications[J]. Mol Imaging Biol, 2005, 9(5): 361-368.
[8]Zhang H, Wroblewski K, Liao S, et al. Prognostic value of metabolic tumor burden from (18)F-FDG PET in surgical patients with non-small-cell lung cancer[J]. Acad Radiol, 2013, 20(1): 32-40.
[9]Stiles BM, Nasar A, Mirza F, et al. Ratio of positron emission tomography uptake to tumor size in surgically resected non-small cell lung cancer[J]. Ann Thorac Surg, 2013, 95(2): 397-403; 404.
[10]Deryugina EI. Chorioallantoic membrane microtumor model to study the mechanisms of tumor angiogenesis, vascular permeability, and tumor cell intravasation[J]. Methods Mol Biol, 2016, 1430: 283-298.
[11]Pomme G, Augustin F, Fiegl M, et al. Detailed assessment of microvasculature markers in non-small cell lung cancer reveals potentially clinically relevant characteristics[J]. Virchows Arch, 2015, 467(1): 55-66.
[12]Seto T, Higashiyama M, Funai H, et al. Prognostic value of expression of vascular endothelial growth factor and its flt-1 and KDR receptors in stage Ⅰ non-small-cell lung cancer[J]. Lung Cancer, 2006, 53(1): 91-96.
[13]Tabone MD, Brugières L, Piperno-Neumann S, et al. Prognostic impact of blood and urinary angiogenic factor levels at diagnosis and during treatment in patients with osteosarcoma: a prospective study[J]. BMC Cancer, 2017, 17(1): 419.
[14]Tas F, Duranyildiz D, Oguz H, et al. Serum vascular endothelial growth factor(VEGF) and bcl-2 levels in advanced stage non-small cell lung cancer[J]. Cancer Invest, 2006, 24(6): 576-580.
[15]Ohta Y, Tanaka Y, Watanabe G, et al. Predicting recurrence following curative surgery in stage Ⅰ non-small cell lung cancer patients using an angiogenesis-associated factor[J]. J Exp Clin Cancer Res, 2007, 26(3): 301-305.
[16]周晓亮,邓豪余,李新辉,等. 18F-FDG PET/CT显像与血清VEGF水平诊断非小细胞肺癌[J]. 中国医学影像技术,2014,30(9):1028-1031.
[17]Bille A, Okiror L, Skanjeti A, et al. The prognostic significance of maximum standardized uptake value of primary tumor in surgically treated non-small cell lung cancer patients: analysis of 413 cases[J]. Clin Lung Cancer, 2013, 14(2): 149-156.
[18]Higashi K, Ueda Y, Arisaka Y, et al. 18F-FDG uptake as a biologic prognostic factor for recurrence in patients with surgically resected non-small cell lung cancer[J]. J Nucl Med, 2002, 43(1): 39-45.